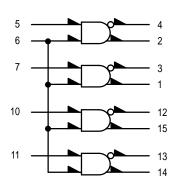
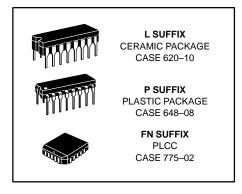
Quad TTL to MECL Translator

The MC10124 is a quad translator for interfacing data and control signals between a saturated logic section and the MECL section of digital systems. The MC10124 has TTL compatible inputs, and MECL complementary open—emitter outputs that allow use as an inverting/ non—inverting translator or as a differential line driver. When the common strobe input is at the low logic level, it forces all true outputs to a MECL low logic state and all inverting outputs to a MECL high logic state.

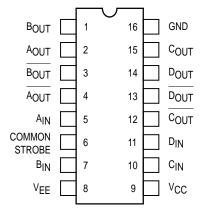

Power supply requirements are ground, +5.0 Volts, and -5.2 Volts. Propagation delay of the MC10124 is typically 3.5 ns. The dc levels are standard or Schottky TTL in, MECL 10,000 out.

An advantage of this device is that TTL level information can be transmitted differentially, via balanced twisted pair lines, to the MECL equipment, where the signal can be received by the MC10115 or MC10116 differential line receivers. The MC10124 is useful in computers, instrumentation, peripheral controllers, test equipment, and digital communications systems.

 P_D = 380 mW typ/pkg (No Load) t_{pd} = 3.5 ns typ (+ 1.5 Vdc in to 50% out)


 t_r , $t_f = 2.5$ ns typ (20%–80%)

LOGIC DIAGRAM



Gnd = PIN 16 V_{CC} (+5.0Vdc) = PIN 9 V_{EE} (-5.2Vdc) = PIN 8

MC10124

DIP PIN ASSIGNMENT

Pin assignment is for Dual-in-Line Package. For PLCC pin assignment, see the Pin Conversion Tables on page 6–11 of the Motorola MECL Data Book (DL122/D).

ELECTRICAL CHARACTERISTICS

			Test Limits							
		Pin Under	-30	0°C		+25°C		+8	5°C	1
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit
Negative Power Supply Drain Current	ΙE	8		72			66		72	mAdc
Positive Power Supply Drain	Іссн	9		16			16		18	mAdc
Current	ICCL	9		25			25		25	mAdc
Reverse Current	IR	6 7		200 50			200 50		200 50	μAdc
Forward Current	lF	6 7		-12.8 -3.2			-12.8 -3.2		-12.8 -3.2	mAdc
Input Breakdown Voltage	BV _{in}	6 7	5.5 5.5		5.5 5.5			5.5 5.5		Vdc
Clamp Input Voltage	VI	6 7		-1.5 -1.5			-1.5 -1.5		-1.5 -1.5	Vdc
High Output Voltage	VOH	1 3	-1.060 -1.060	-0.890 -0.890	-0.960 -0.960		-0.810 -0.810	-0.890 -0.890	-0.700 -0.700	Vdc
Low Output Voltage	V _{OL}	1 3	-1.890 -1.890	-1.675 -1.675	-1.850 -1.850		-1.650 -1.650	-1.825 -1.825	-1.615 -1.615	Vdc
High Threshold Voltage	VOHA	1 3	-1.080 -1.080		-0.980 -0.980			-0.910 -0.910		Vdc
Low Threshold Voltage	VOLA	1 3		-1.655 -1.655			-1.630 -1.630		-1.595 -1.595	Vdc
Switching Times (50Ω Load)										ns
Propagation Delay (+3.5Vdc to 50%) ¹	t6+1+ t6-1- t7+1+ t7-1- t7+3- t7-3+	1 1 1 1 3 3	1.5 1.0 1.5 1.0 1.5	6.8 6.0 6.8 6.0 6.8 6.0	1.0 1.0 1.0 1.0 1.0	3.5 3.5 3.5 3.5 3.5 3.5	6.0 6.0 6.0 6.0 6.0	1.0 1.5 1.0 1.5 1.0	6.0 6.8 6.0 6.8 6.0 6.8	
Rise Time (20 to 80%)	t ₁₊	1	1.0	4.2	1.1	2.5	3.9	1.1	4.3	
Fall Time (20 to 80%)	t ₁ _	1	1.0	4.2	1.1	2.5	3.9	1.1	4.3	

^{1.} See switching time test circuit. Propagation delay for this circuit is specified from +1.5Vdc in to the 50% point on the output waveform. The +3.5Vdc is shown here because all logic and supply levels are shifted 2 volts positive.

3–83 MOTOROLA

ELECTRICAL CHARACTERISTICS (continued)

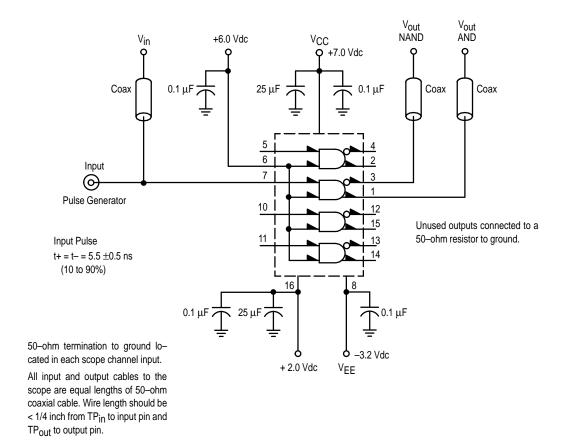
			TEST VOLTAGE VALUES (Volts)					
	@ Test Te	mperature	V _{IH}	V _{ILmax}	V _{IHA} ,	V _{ILA} ,	٧ _F	
		-30°C	+4.0	+0.40	+2.00	+1.10	+0.40	
		+25°C	+4.0	+0.40	+1.80	+1.10	+0.40	
		+85°C	+4.0	+0.40	+1.80	+0.90	+0.40	
		Pin	TEST VO	DLTAGE API	PLIED TO PII	NS LISTED	BELOW]
Characteristic	Symbol	Under Test	V _{IH}	V _{ILmax}	V _{IHA} ,	V _{ILA} ,	٧ _F	Gnd
Negative Power Supply Drain Current	ΙE	8						16
Positive Power Supply Drain	Іссн	9	5,6,7,10,11					16
Current	ICCL	9						5,6,7,10,11,16
Reverse Current	IR	6 7					5,7,10,11 6	16 16
Forward Current	lF	6 7	5,7,10,11 6				6 7	16 16
Input Breakdown Voltage	BV _{in}	6 7						5,7,10,11,16 6,16
Clamp Input Voltage	VI	6 7						16 16
High Output Voltage	Vон	1 3	6,7	6,7				16 16
Low Output Voltage	V _{OL}	1 3	6,7	6,7				16 16
High Threshold Voltage	Vона	1 3	6 6		7	7		16 16
Low Threshold Voltage	VOLA	1 3	6 6		7	7		16 16
Switching Times (50Ω Load)			+6.0 V	Pulse In	Pulse Out			+2.0 V
Propagation Delay (+3.5Vdc to 50%) ¹	t6+1+ t6-1- t7+1+ t7-1- t7+3- t7-3+	1 1 1 1 3 3	7 7 6 6 6 6	6 6 7 7 7	1 1 1 1 3 3			16 16 16 16 16
Rise Time (20 to 80%)	t ₁₊	1	6	7	1			16
Fall Time (20 to 80%)	t ₁₋	1	6	7	1			16

^{1.} See switching time test circuit. Propagation delay for this circuit is specified from +1.5Vdc in to the 50% point on the output waveform. The +3.5Vdc is shown here because all logic and supply levels are shifted 2 volts positive.

MOTOROLA 3–84

ELECTRICAL CHARACTERISTICS (continued)

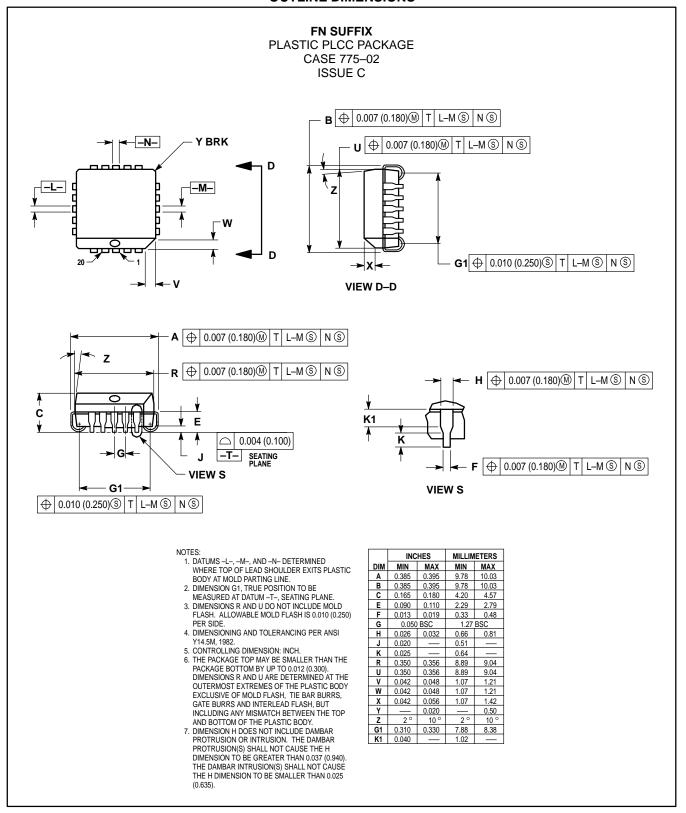
			TEST VOI	EST VOLTAGE VALUES (Volts)			(mA)	
	@ Test Te	mperature	٧R	VCC	VEE	lį	l _{in}	
		–30°C	+2.40	+5.00	-5.2	-10	+1.0	
		+25°C	+2.40	+5.00	-5.2	-10	+1.0	
		+85°C	+2.40	+5.00	-5.2	-10	+1.0	
		Pin Under	TEST V]				
Characteristic	Symbol	Test	٧ _R	vcc	VEE	lj	l _{in}	Gnd
Negative Power Supply Drain Current	ΙE	8		9	8			16
Positive Power Supply Drain	ICCH	9		9	8			16
Current	ICCL	9		9	8			5,6,7,10,11,16
Reverse Current	IR	6 7	6 7	9 9	8 8			16 16
Forward Current	ΙF	6 7		9 9	8 8			16 16
Input Breakdown Voltage	BV _{in}	6 7		9 9	8 8		6 7	5,7,10,11,16 6,16
Clamp Input Voltage	VI	6 7		9 9	8 8	6 7		16 16
High Output Voltage	Vон	1 3		9 9	8 8			16 16
Low Output Voltage	VOL	1 3		9 9	8 8			16 16
High Threshold Voltage	Vона	1 3		9 9	8 8			16 16
Low Threshold Voltage	VOLA	1 3		9 9	8 8			16 16
Switching Times (50Ω Load)				+7.0 V	−3.2 V			+2.0 V
Propagation Delay (+3.5Vdc to 50%) ¹	t6+1+ t6-1- t7+1+ t7-1- t7+3- t7-3+	1 1 1 1 3 3		9 9 9 9 9	8 8 8 8 8			16 16 16 16 16
Rise Time (20 to 80%)	t ₁₊	1		9	8			16
Fall Time (20 to 80%)	t ₁₋	1		9	8			16

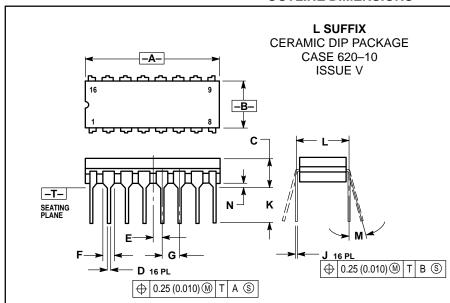

^{1.} See switching time test circuit. Propagation delay for this circuit is specified from +1.5Vdc in to the 50% point on the output waveform. The +3.5Vdc is shown here because all logic and supply levels are shifted 2 volts positive.

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50–ohm resistor to –2.0 volts. Test procedures are shown for only one gate. The other gates are tested in the same manner.

3-85

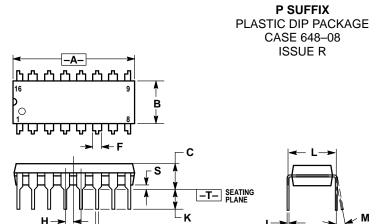
MOTOROLA


SWITCHING TIME TEST CIRCUIT


NOTE: All power supply and logic levels are shown shifted 2 volts positive.

MOTOROLA 3–86

OUTLINE DIMENSIONS


OUTLINE DIMENSIONS

NOTES:

- DIMENSIONING AND TOLERANCING PER
- ANSI Y14.5M, 1982. CONTROLLING DIMENSION: INCH.
- DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL.
- DIMENSION F MAY NARROW TO 0.76 (0.030) WHERE THE LEAD ENTERS THE CERAMIC

	INC	HES	MILLIMETERS			
DIM	MIN	MAX	MIN	MAX		
Α	0.750	0.785	19.05	19.93		
В	0.240	0.295	6.10	7.49		
С		0.200		5.08		
D	0.015	0.020	0.39	0.50		
Е	0.050	BSC	1.27 BSC			
F	0.055	0.065	1.40	1.65		
G	0.100) BSC	2.54 BSC			
Н	0.008	0.015	0.21	0.38		
K	0.125	0.170	3.18	4.31		
L	0.300	BSC	7.62	BSC		
М	0°	15°	0 °	15°		
N	0.020	0.040	0.51	1.01		

0.25 (0.010) M T A M

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI
- Y14.5M, 1982. CONTROLLING DIMENSION: INCH.
- DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL
- DIMENSION B DOES NOT INCLUDE MOLD FLASH.
- ROUNDED CORNERS OPTIONAL

	INC	HES	MILLIMETERS				
DIM	MIN	MAX	MIN	MAX			
Α	0.740	0.770	18.80	19.55			
В	0.250	0.270	6.35	6.85			
С	0.145	0.175	3.69	4.44			
D	0.015	0.021	0.39	0.53			
F	0.040	0.70	1.02	1.77			
G	0.100 BSC		2.54 BSC				
Н	0.050 BSC		1.27 BSC				
J	0.008	0.015	0.21	0.38			
K	0.110	0.130	2.80	3.30			
L	0.295	0.305	7.50	7.74			
М	0°	10 °	0°	10 °			
S	0.020	0.040	0.51	1.01			

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical parameters, including or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and (A) are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 303-675-2140 or 1-800-441-2447

D 16 PL

Mfax™: RMFAX0@email.sps.mot.com - TOUCHTONE 602-244-6609 INTERNET: http://Design-NET.com

JAPAN: Nippon Motorola Ltd.; Tatsumi-SPD-JLDC, 6F Seibu-Butsuryu-Center, 3-14-2 Tatsumi Koto-Ku, Tokyo 135, Japan. 81-3-3521-8315

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298

MC10124/D

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.