
IDUINO for maker’s life

www.openplatform.cc

User Manual

For IDUINO Starter kit(KTS09)

IDUINO for maker’s life

www.openplatform.cc

1.Overview

1.1 what is Arduino?
 Arduino is an open-source prototyping platform based on easy-to-use hardware

and software. Arduino boards are able to read inputs - light on a sensor, a finger on a

button, or a Twitter message - and turn it into an output - activating a motor, turning

on an LED, publishing something online. You can tell your board what to do by sending

a set of instructions to the microcontroller on the board. To do so you use the Arduino

programming language (based on Wiring), and the Arduino Software (IDE), based on

Processing.

 The official website is www.arduino.cc and www.arduino.org.

1.2 what is IDUINO ?

 Because of the arduino technology is totally opensource, so anyone can use this

facility to create more valuable products.

 IDUINO is a series of Ardunio opensource products collection, which includes not

only motherboard, but hundreds of sensors and modules used for Arduino board, and

many kinds of Arduino Starter Kit, many kinds of Arduino projects, many kinds of car

chassis , expansion board, accessories , Arduino DIY 3D Printer.

 IDUINO are more focused on manufacturing and constructing Arduino project

system.

http://www.arduino.cc/
http://www.arduino.org/

IDUINO for maker’s life

www.openplatform.cc

1.3 What’s the difference between Arduino and IDUINO?
 For the development, IDUINO is just a different brand comparing with the Arduino

development.

 For other categories, IDUINO’s quantity exceeds Arduino a lot.

IDUINO for maker’s life

www.openplatform.cc

2 Content list

 1×Iduino Nano

 1×Solderless Breadboard

 1×USB Cable

 1× 4 Digit Seven Segment Display

 1× 1 Digit Seven Segment Display

 1× 8*8 Dot Matrix Holder

 1× 6AA Battery Holder

 Assorted Resistors

 Assorted LEDs

 RGB LED Module

 4×Tactile Switches

 2×Piezo Sounders

 Assorted Jumpers

 1× 74HC595 Shift Register

 1× 50 K Potentiometer

 2×Light Dependant Resistors

 1× Infrared Photo Diode

 1×Infrared Remote Receiver

 1×Analog Temperature Sensor

 1× 17 Button IR Remote Control

 1× 40-pin Header

 1× Two Channel Relay Module

3. IDUINO Nano

 The IDUINO Nano is a small, complete, and breadboard-friendly board based on the

ATmega328 or ATmega168.It has more or less the same functionality of the Arduino

Duemilanove, but in a different package. It lacks only a DC power jack, and works with

a Mini-B USB cable instead of a standard one. The Nano was designed and is being

produced by Gravitech.

IDUINO for maker’s life

www.openplatform.cc

Specifications:

Microcontroller Atmel ATmega168 or ATmega328

Operating Voltage

(logic level)

5 V

Input Voltage

(recommended)

7-12 V

Input Voltage (limits) 6-20 V

Digital I/O Pins 14 (of which 6 provide PWM output)

Analog Input Pins 8

DC Current per I/O Pin 40 mA

Flash Memory 16 KB (ATmega168) or 32 KB (ATmega328) of which 2 KB

used by bootloader

SRAM 1 KB (ATmega168) or 2 KB (ATmega328)

EEPROM 512 bytes (ATmega168) or 1 KB (ATmega328)

Clock Speed 16 MHz

Dimensions 0.73" x 1.70"

Length 45 mm

Width 18 mm

Weigth 5 g

IDUINO for maker’s life

www.openplatform.cc

4. chapter 1: Using Breadboard

Introduction

 Breadboards are one of the most fundamental pieces when learning how to build

circuits. In this tutorial, you will learn a little bit about what breadboards are, why they

are called breadboards, and how to use one. Once you are done you should have a

basic understanding of how breadboards work and be able to build a basic circuit on a

breadboard.

 Now that we’ve seen how the connections in a breadboard are made, let’s look at

a larger, more typical breadboard. Aside from horizontal rows, breadboards usually

have what are called power rails that run vertically along the sides.

IDUINO for maker’s life

www.openplatform.cc

And these DIP chips (salsa anyone?) have legs that come out of both sides and fit

perfectly over that ravine. Since each leg on the IC is unique, we don’t want both sides

to be connected to each other. That is where the separation in the middle of the board

comes in handy. Thus, we can connect components to each side of the IC without

interfering with the functionality of the leg on the opposite side.

IDUINO for maker’s life

www.openplatform.cc

5. chapter 2: LED blinking

Introduction

 Blinking LED experiment is quite simple. In the "Hello World!" program, we have

come across LED. This time, we are going to connect an LED to one of the digital pins

rather than using LED13, which is soldered to the board. Except an Arduino and an

USB cable, we will need extra parts as below:

Hardware required

IDUINO for maker’s life

www.openplatform.cc

1. Red M5 LED*1

2. 220Ω resistor*1

3. Breadboard*1

4. Breadboard jumper wires* several

 We follow below diagram from the experimental schematic link. Here we use

digital pin 10. We connect LED to a 220 ohm resistor to avoid high current damaging

the LED.

Circuit connection:

Sample program

*******code begin*******

int ledPin = 10; // define digital pin 10.

void setup()

{

pinMode(ledPin, OUTPUT);// define pin with LED connected as output.

}

void loop()

IDUINO for maker’s life

www.openplatform.cc

{

digitalWrite(ledPin, HIGH); // set the LED on.

delay(1000); // wait for a second.

digitalWrite(ledPin, LOW); // set the LED off.

delay(1000); // wait for a second

}

*******code begin*******

Result

 After downloading this program, in the experiment, you will see the LED

connected to pin 10 turning on and off, with an interval approximately one second.

The blinking LED experiment is now completed.

6. Chapter3: PWM gradational LED

 Introduction

 PWM, short for Pulse Width Modulation, is a technique used to encode analog

signal level into digital ones. A computer cannot output analog voltage but only digital

voltage values such as 0V or 5V. So we use a high resolution counter to encode a

specific analog signal level by modulating the duty cycle of PMW. The PWM signal is

also digitalized because in any given moment, fully on DC power supply is either 5V

(ON), or 0V (OFF). The voltage or current is fed to the analog load (the device that uses

the power) by repeated pulse sequence being ON or OFF. Being on, the current is fed

to the load; being off, it's not. With adequate bandwidth, any analog value can be

encoded using PWM. The output voltage value is calculated via the on and off time.

Output voltage = (turn on time/pulse time) * maximum voltage value.

IDUINO for maker’s life

www.openplatform.cc

PWM has many applications: lamp brightness regulating, motor speed regulating,

sound making, etc.

The following are the three basic parameters of PMW:

1. The amplitude of pulse width (minimum / maximum)

2. The pulse period (The reciprocal of pulse frequency in 1 second)

3. The voltage level(such as：0V-5V）

 There are 6 PMW interfaces on Arduino, namely digital pin 3, 5, 6, 9, 10, and 11. In

previous experiments, we have done "button-controlled LED", using digital signal to

control digital pin, also one about potentiometer. This time, we will use a

potentiometer to control the brightness of the LED.

Hardware required

 Variable resistor*1

 Red M5 LED*1

IDUINO for maker’s life

www.openplatform.cc

 220Ω resistor

 Breadboard*1

 Breadboard jumper wires

Circuit connection

Sample program

 In the program compiling process, we will use the analogWrite (PWM interface,

analog value) function. In this experiment, we will read the analog value of the

potentiometer and assign the value to PWM port, so there will be corresponding

change to the brightness of the LED. One final part will be displaying the analog value

on the screen. You can consider this as the "analog value reading" project adding the

PWM analog value assigning part. Below is a sample program for your reference.

*******code begin*******

int potpin=0;// initialize analog pin 0

int ledpin=11;//initialize digital pin 11（PWM output）

int val=0;// Temporarily store variables' value from the sensor

void setup()

IDUINO for maker’s life

www.openplatform.cc

{

pinMode(ledpin,OUTPUT);// define digital pin 11 as “output”

Serial.begin(9600);// set baud rate at 9600

// attention: for analog ports, they are automatically set up as “input”

}

void loop()

{

val=analogRead(potpin);// read the analog value from the sensor and assign it to val

Serial.println(val);// display value of val

analogWrite(ledpin,val/4);// turn on LED and set up brightness（maximum output of

PWM is 255）

delay(10);// wait for 0.01 second

}

*******code end*******

Result

 After downloading the program, when we rotate the potentiometer knob, we can

see changes of the displaying value, also obvious change of the LED brightness on the

breadboard.

7. Chapter 4: RGB LED Module

Introduction

SMD RGB LED module consists of a full-color LED made by R, G, B three pin PWM

voltage input can be adjusted. Primary colors (red / blue / green) strength in order to

achieve full color mixing effect. Control of the module with the Arduino can be

achieved Cool lighting effects.

Specification

 Red Vf: 1.8 to 2.1V

IDUINO for maker’s life

www.openplatform.cc

 Green Vf: 3.0 to 3.2V

 Blue Vf: 3.0 to 3.2V

 Red color: 620-625 nm

 Green color: 520-525 nm

 Blue color: 465-470 nm

 Red brightness @ ~20mA: 600-800 mcd

 Blue brightness @ ~20mA: 800-1000 mcd

 Green brightness @ ~20mA: 1500-2000mcd

Pin Instructions

Pin Name Description

“R” Red light

“G” Green light

“B” Blue light

“-” Ground

 Example

 In this example, we blink an LED and using an RGB LED we can generate any color

our heart desires.

 Here is the physical connection(color is different):

Example Code

********Code begin********

//RGB LED pins

int ledDigitalOne[] = {10, 11, 9}; //the three digital pins of the digital LED

 //10 = redPin, 11 = greenPin, 9 = bluePin

const boolean ON = HIGH; //Define on as LOW (this is because we use a common

 //Anode RGB LED (common pin is connected to +5

IDUINO for maker’s life

www.openplatform.cc

volts)

const boolean OFF = LOW; //Define off as HIGH

//Predefined Colors

const boolean RED[] = {ON, OFF, OFF};

const boolean GREEN[] = {OFF, ON, OFF};

const boolean BLUE[] = {OFF, OFF, ON};

const boolean YELLOW[] = {ON, ON, OFF};

const boolean CYAN[] = {OFF, ON, ON};

const boolean MAGENTA[] = {ON, OFF, ON};

const boolean WHITE[] = {ON, ON, ON};

const boolean BLACK[] = {OFF, OFF, OFF};

//An Array that stores the predefined colors (allows us to later randomly display a

color)

const boolean* COLORS[] = {RED, GREEN, BLUE, YELLOW, CYAN, MAGENTA, WHITE,

BLACK};

void setup(){

 for(int i = 0; i < 3; i++){

 pinMode(ledDigitalOne[i], OUTPUT); //Set the three LED pins as outputs

 }

}

void loop(){

/* Example - 1 Set a color

 Set the three LEDs to any predefined color

*/

 setColor(ledDigitalOne, YELLOW); //Set the color of LED one

/* Example - 2 Go through Random Colors

 Set the LEDs to a random color

*/

 //randomColor();

}

void randomColor(){

 int rand = random(0, sizeof(COLORS) / 2); //get a random number within the range

of colors

 setColor(ledDigitalOne, COLORS[rand]); //Set the color of led one to a random

color

 delay(1000);

IDUINO for maker’s life

www.openplatform.cc

}

/* Sets an led to any color

 led - a three element array defining the three color pins (led[0] = redPin, led[1] =

greenPin, led[2] = bluePin)

 color - a three element boolean array (color[0] = red value (LOW = on, HIGH = off),

color[1] = green value, color[2] =blue value)

*/

void setColor(int* led, boolean* color){

 for(int i = 0; i < 3; i++){

 digitalWrite(led[i], color[i]);

 }

}

/* A version of setColor that allows for using const boolean colors

*/

void setColor(int* led, const boolean* color){

 boolean tempColor[] = {color[0], color[1], color[2]};

 setColor(led, tempColor);

}

********Code End********

8. Chapter 5: LCD1602 screen

Introduction

IDUINO for maker’s life

www.openplatform.cc

In this experiment, we use an Arduino to drive the 1602 LCD.

1602 LCD has wide applications. In the beginning, 1602 LCD uses a HD44780 controller.

Now, almost all 1602 LCD module uses a compatible IC, so their features are basically

the same.

1602LCD main parameters:

Display capacity: 16 * 2 characters.

Chip operating voltage: 4.5 ~ 5.5V.

Working current: 2.0mA (5.0V).

Optimum working voltage of the module is 5.0V.

Character size: 2.95 * 4.35 (W * H) mm.

Pin description of 1602 LCD

Pin name Pin description Pin name Pin description

VSS Power GND D2 Date I/O

VDD Power positive D3 Date I/O

VL LCD voltage bias signal D4 Date I/O

RS Select data/command(V

/L)

D5 Date I/O

R/W Select read/write(H/L) D6 Date I/O

E Enable signal D7 Date I/O

D0 Date I/O BLA Back light power posit

ive

D1 Date I/O BLK Back light power nega

tive

Circuit connection

IDUINO for maker’s life

www.openplatform.cc

Example code

*******code begin*******

#include span style="color: #cc6600;">LiquidCrystal.h> //Include LCDs

LibraryLiquidCrystal lcd(12, 11, 5, 4, 3, 2); //Attach LCDs and Arduino pin

comunnication

int time; //Entire variable declaration(time)

void setup()//setup section

{

lcd.begin(16, 2); //LCD begins. dimension: 16x2(Coluns x Rows)

lcd.setCursor(0, 0); // Positions the cursor in the first column (0) and the firt row (1) at

LCD

lcd.print("LiquidCrystal.h"); //LCD write comand"LiquidCrystal.h"

lcd.setCursor(0, 1); // Positions the cursor in the first column (0) and the second row

(1) at LCD

lcd.print("GarageLab"); // LCD write command "GarageLab"

IDUINO for maker’s life

www.openplatform.cc

}

void loop()

{

lcd.setCursor(13, 1); // Positions the cursor on the fourteenth column (13) and the

second line (1) LCD

lcd.print(time); // Write the current value of the count variable in the LCD

delay(1000); // Waits for 1 second

time++; // Increment count variable

if(time == 600) // If the variable temp get to 600 (10 minutes), ...

 {

 time = 0; //... resets the count variable

 }

}

*******code End*******

9. Chapter6: 2-Channel 5V relay

IDUINO for maker’s life

www.openplatform.cc

Introduction

 Arduino Relay Shield employs high quality relay with two channels input and two

channels output. It can be connected to 250V/10A AC element or 24V/10A DC element

to the maximum, therefore, it can be used to control lights, motors and etc.

The modularized design makes it easy to connect to Arduino expansion board. The

output state of the relay is shown by a LED for the convenience of actual application.

Specification

Control signal: TTL voltage

Rated load:

10A 250VAC

10A 125VAC

10A 30DC

10A 28VDC

Rated Through-current: 10A(NO) 5A(NC)

Max Switching Voltage: 250VAC 30VDC

Contact actuation time: ﹤10ms

Definition of module pins:

i) Pin 1- Pin 2----Controlling end

ii) Power supply (VCC)

iii) Ground (GND)

Pinout

Pin Name Description

“Vcc” Power(5V DC)

“GND” Gnd

“in1”
Singal pin, connected with Arduino and

control Relay 1

“in2”
Singal pin, connected with Arduino and

control Relay 2

“COM”

Common pin, which usually directly connect

with the” Gnd” unless you want to change

the TTL mode(default the HIGH level

activate)

“NO” Normally Open Connection

“NC” Normally Closed Connection

“C”(middle pin)
Common Connection, Which connected with

the power for the load.

Example code

IDUINO for maker’s life

www.openplatform.cc

*********Code begin*********

#define RELAY1 6

#define RELAY2 7

void setup()

{

// Initialise the Arduino data pins for OUTPUT

 pinMode(RELAY1, OUTPUT);

 pinMode(RELAY2, OUTPUT);

}

 void loop()

{

 digitalWrite(RELAY1,LOW); // Turns ON Relays 1

 delay(2000); // Wait 2 seconds

 digitalWrite(RELAY1,HIGH); // Turns Relay Off

 digitalWrite(RELAY2,LOW); // Turns ON Relays 4

 delay(2000); // Wait 2 seconds

 digitalWrite(RELAY2,HIGH); // Turns Relay Off

 }

*********Code End*********

10. Chapter7: Positive buzzer

IDUINO for maker’s life

www.openplatform.cc

Introduction

Active buzzer is widely used on computer, printer, alarm, electronic toy, telephone,

timer etc as a sound making element. It has an inner vibration source. Simply

connect it with 5V power supply, it can buzz continuously.

Hardware required

Buzzer*1

Key *1

Breadboard*1

Breadboard jumper wires

Circuit connection

Example code

*******code begin*******

//

int buzzer=8;// initialize digital IO pin that controls the buzzer

IDUINO for maker’s life

www.openplatform.cc

void setup()

{

 pinMode(buzzer,OUTPUT);// set pin mode as “output”

}

void loop()

{

digitalWrite(buzzer, HIGH); // produce sound

}

//

*******code End*******

Result

After downloading the program, the buzzer experiment is completed. You can see

the buzzer is ringing.

11.Chapter8: Photo Resistor

Introduction

 After completing all the previous experiments, we acquired some basic

understanding and knowledge about Arduino application. We have learned digital

input and output, analog input and PWM. Now, we can begin the learning of sensors

applications.

Photo resistor (Photovaristor) is a resistor whose resistance varies according to

different incident light strength. It's made based on the photoelectric effect of

semiconductor. If the incident light is intense, its resistance reduces; if the incident

light is weak, the resistance increases. Photovaristor is commonly applied in the

IDUINO for maker’s life

www.openplatform.cc

measurement of light, light control and photovoltaic conversion (convert the change

of light into the change of electricity).

 Photo resistor is also being widely applied to various light control circuit, such as

light control and adjustment, optical switches etc.

 We will start with a relatively simple experiment regarding photovaristor

application. Photovaristor is an element that changes its resistance as light strenth

changes. So we will need to read the analog values. We can refer to the PWM

experiment, replacing the potentiometer with photovaristor. When there is change in

light strength, there will be corresponding change on the LED.

Hardware required

Photo resistor*1

Red M5 LED*1

10KΩresistor*1

220Ωresistor*1

Bread board*1

Bread board jumper wires

Circuit connection

IDUINO for maker’s life

www.openplatform.cc

Example code

*******code begin*******

//

int potpin=0;// initialize analog pin 0, connected with photovaristor

int ledpin=11;// initialize digital pin 11, output regulating the brightness of LED

int val=0;// initialize variable va

void setup()

{

pinMode(ledpin,OUTPUT);// set digital pin 11 as “output”

Serial.begin(9600);// set baud rate at “9600”

}

void loop()

{

val=analogRead(potpin);// read the analog value of the sensor and assign it to val

Serial.println(val);// display the value of val

analogWrite(ledpin,val);// turn on the LED and set up brightness（maximum output

value 255）

IDUINO for maker’s life

www.openplatform.cc

delay(10);// wait for 0.01

}

//

*******code End*******

Result

 After downloading the program, you can change the light strength around the

photovaristor and see corresponding brightness change of the LED. Photovaristors has

various applications in our everyday life. You can make other interesting interactive

projects base on this one.

12. Chapter9: Flame sensor

Introduction

Flame sensor (Infrared receiving triode) is specially used on robots to find the fire

source. This sensor is of high sensitivity to flame. Below is a photo of it.

Working principle:

Flame sensor is made based on the principle that infrared ray is highly sensitive to

flame. It has a specially designed infrared receiving tube to detect fire, and then

convert the flame brightness to fluctuating level signal. The signals are then input

into the central processor and be dealt with accordingly.

Sensor connection

The shorter lead of the receiving triode is for negative, the other one for positive.

Connect negative to 5V pin, positive to resistor; connect the other end of the resistor

to GND, connect one end of a jumper wire to a clip which is electrically connected to

sensor positive, the other end to analog pin. As shown below:

IDUINO for maker’s life

www.openplatform.cc

Hardware required

Flame sensor *1

Buzzer *1

10K resistor *1

Breadboard jumper wires

Example Code

*******code End*******

int flame=0;// select analog pin 0 for the sensor

int Beep=9;// select digital pin 9 for the buzzer

int val=0;// initialize variable

void setup()

{

 pinMode(Beep,OUTPUT);// set LED pin as “output”

pinMode(flame,INPUT);// set buzzer pin as “input”

Serial.begin(9600);// set baud rate at “9600”

}

void loop()

{

 val=analogRead(flame);// read the analog value of the sensor

 Serial.println(val);// output and display the analog value

 if(val>=600)// when the analog value is larger than 600, the buzzer will buzz

IDUINO for maker’s life

www.openplatform.cc

 {

 digitalWrite(Beep,HIGH);

 }else

 {

 digitalWrite(Beep,LOW);

 }

 delay(500);

}

*******code End*******

13 Chapter10: LM35 Temperature Sensor

Introduction

LM35 is a common and easy-to-use temperature sensor. It does not require other

hardware. You just need an analog port to make it work. The difficulty lies in

compiling the code to convert the analog value it reads to celsius temperature.

Hardware required

LM35*1

Breadboard*1

Breadboard jumper wires

Circuit connection

IDUINO for maker’s life

www.openplatform.cc

Example code

*******code begin*******

int potPin = 0; // initialize analog pin 0 for LM35 temperature sensor

void setup()

{

Serial.begin(9600);// set baud rate at”9600”

}

void loop()

{

int val;// define variable

int dat;// define variable

val=analogRead(0);// read the analog value of the sensor and assign it to val

dat=(125*val)>>8;// temperature calculation formula

Serial.print("Tep:");// output and display characters beginning with Tep

Serial.print(dat);// output and display value of dat

Serial.println("C");// display “C” characters

delay(500);// wait for 0.5 second

}

*******code End*******

IDUINO for maker’s life

www.openplatform.cc

Result

After downloading the program, you can open the monitoring window to see current

temperature.

14. Chapter11: Tilt sensor switch

 Tilt sensors allow you to detect orientation or inclination. They are small,

inexpensive, low-power and easy-to-use. If used properly, they will not wear out.

Their simplicitiy makes them popular for toys, gadgets and appliances. Sometimes

they are referred to as "mercury switches", "tilt switches" or "rolling ball sensors" for

obvious reasons.

Simple Tilt-Activated LED

This is the most basic way of connecting to a tilt switch, but can be handy while one

is learning about them. Simply connect it in series with an LED, resistor and battery.

Tilt to turn on and off.

IDUINO for maker’s life

www.openplatform.cc

Reading Switch State with a Microcontroller

Note that the layout above shows a 10K pullup resistor but for the code I use the

'built-in' pullup resistor that you can turn on by setting an input pin to HIGH output

(its quite neat!) If you use the internal pull-up you can skip the external one.

Example code

*******code begin*******

int inPin = 2; // the number of the input pin

int outPin = 13; // the number of the output pin

int LEDstate = HIGH; // the current state of the output pin

int reading; // the current reading from the input pin

int previous = LOW; // the previous reading from the input pin

IDUINO for maker’s life

www.openplatform.cc

// the follow variables are long's because the time, measured in miliseconds,

// will quickly become a bigger number than can be stored in an int.

long time = 0; // the last time the output pin was toggled

long debounce = 50; // the debounce time, increase if the output flickers

void setup()

{

 pinMode(inPin, INPUT);

 digitalWrite(inPin, HIGH); // turn on the built in pull-up resistor

 pinMode(outPin, OUTPUT);

}

void loop()

{

 int switchstate;

 reading = digitalRead(inPin);

 // If the switch changed, due to bounce or pressing...

 if (reading != previous) {

 // reset the debouncing timer

 time = millis();

 }

 if ((millis() - time) > debounce) {

 // whatever the switch is at, its been there for a long time

 // so lets settle on it!

 switchstate = reading;

 // Now invert the output on the pin13 LED

 if (switchstate == HIGH)

 LEDstate = LOW;

 else

 LEDstate = HIGH;

 }

 digitalWrite(outPin, LEDstate);

 // Save the last reading so we keep a running tally

 previous = reading;

}

*******code End*******

IDUINO for maker’s life

www.openplatform.cc

15. Chapter12: infrared receiver

 IR, or infrared, communication is a common, inexpensive, and easy to use

wireless communication technology. IR light is very similar to visible light, except that

it has a slightlty longer wavelength. This means IR is undetectable to the human eye -

perfect for wireless communication. For example, when you hit a button on your TV

remote, an IR LED repeatedly turns on and off, 38,000 time a second, to transmit

information (like volume or channel control) to an IR photo sensor on your TV.

Circuit connection

IDUINO for maker’s life

www.openplatform.cc

Example code

*******code begin*******

#include <IRremote.h>

int RECV_PIN = 11;

IRrecv irrecv(RECV_PIN);

decode_results results;

void setup()

{

 Serial.begin(9600);

 irrecv.enableIRIn(); // Start the receiver

}

void loop() {

 if (irrecv.decode(&results)) {

 Serial.println(results.value, HEX);

 irrecv.resume(); // Receive the next value

 }

}

*******code End*******

IDUINO for maker’s life

www.openplatform.cc

16 Chapter13: 1-bit digit 7-segment display

Introduction

 LED segment displays are common for displaying numerical information. It's widely

applied on displays of electromagnetic oven, full automatic washing machine, water

temperature display, electronic clock etc. It is necessary that we learn how it works.

LED segment display is a semiconductor light-emitting device. Its basic unit is a light-

emitting diode (LED). LED segment display can be divided into 7-segment display and

8-segment display according to the number of segments. 8-segment display has one

more LED unit (for decimal point display) than 7-segment one. In this experiment, we

use a 8-segment display. According to the wiring method of LED units, LED segment

displays can be divided into display with common anode and display with common

cathode. Common anode display refers to the one that combine all the anodes of LED

units into one common anode (COM).

 For the common anode display, connect the common anode (COM) to +5V. When

the cathode level of a certain segment is low, the segment is on; when the cathode

level of a certain segment is high, the segment is off. For the common cathode display,

connect the common cathode (COM) to GND. When the anode level of a certain

segment is high, the segment is on; when the anode level of a certain segment is low,

the segment is off.

IDUINO for maker’s life

www.openplatform.cc

Circuit connection

Example code

*******code begin*******

// Define the LED digit patters, from 0 - 9

// Note that these patterns are for common cathode displays

// For common anode displays, change the 1's to 0's and 0's to 1's

// 1 = LED on, 0 = LED off, in this order:

// Arduino pin: 2,3,4,5,6,7,8

byte seven_seg_digits[10][7] = { { 1,1,1,1,1,1,0 }, // = 0

 {

0,1,1,0,0,0,0 }, // = 1

 {

1,1,0,1,1,0,1 }, // = 2

 {

1,1,1,1,0,0,1 }, // = 3

 {

0,1,1,0,0,1,1 }, // = 4

 {

1,0,1,1,0,1,1 }, // = 5

 {

1,0,1,1,1,1,1 }, // = 6

IDUINO for maker’s life

www.openplatform.cc

 {

1,1,1,0,0,0,0 }, // = 7

 {

1,1,1,1,1,1,1 }, // = 8

 {

1,1,1,0,0,1,1 } // = 9

 };

void setup() {

 pinMode(2, OUTPUT);

 pinMode(3, OUTPUT);

 pinMode(4, OUTPUT);

 pinMode(5, OUTPUT);

 pinMode(6, OUTPUT);

 pinMode(7, OUTPUT);

 pinMode(8, OUTPUT);

 pinMode(9, OUTPUT);

 writeDot(0); // start with the "dot" off

}

void writeDot(byte dot) {

 digitalWrite(9, dot);

}

void sevenSegWrite(byte digit) {

 byte pin = 2;

 for (byte segCount = 0; segCount < 7; ++segCount) {

 digitalWrite(pin, seven_seg_digits[digit][segCount]);

 ++pin;

 }

}

void loop() {

 for (byte count = 10; count > 0; --count) {

 delay(1000);

 sevenSegWrite(count - 1);

 }

 delay(4000);

}

*******code End*******

IDUINO for maker’s life

www.openplatform.cc

17. Chapter14: 1-bit digit 7-segment display

IDUINO for maker’s life

www.openplatform.cc

Example code:

 /*This is an example of how to drive a 7 segment LED display from an ATmega

without the use of current limiting resistors.

 This technique is very common but requires some knowledge of electronics - you do

run the risk of dumping too

 much current through the segments and burning out parts of the display. If you use

the stock code you should be ok, but

 be careful editing the brightness values.

 This code should work with all colors (red, blue, yellow, green) but the brightness

will vary from one color to the next

 because the forward voltage drop of each color is different. This code was written

and calibrated for the red color.

 This code will work with most Arduinos but you may want to re-route some of the

pins.

 7 segments

 4 digits

 1 colon

 =

 12 pins required for full control

 */

IDUINO for maker’s life

www.openplatform.cc

*******code Begin*******

int digit1 = 11; //PWM Display pin 1

int digit2 = 10; //PWM Display pin 2

int digit3 = 9; //PWM Display pin 6

int digit4 = 6; //PWM Display pin 8

//Pin mapping from Arduino to the ATmega DIP28 if you need it

//http://www.arduino.cc/en/Hacking/PinMapping

int segA = A1; //Display pin 14

int segB = 3; //Display pin 16

int segC = 4; //Display pin 13

int segD = 5; //Display pin 3

int segE = A0; //Display pin 5

int segF = 7; //Display pin 11

int segG = 8; //Display pin 15

void setup() {

 pinMode(segA, OUTPUT);

 pinMode(segB, OUTPUT);

 pinMode(segC, OUTPUT);

 pinMode(segD, OUTPUT);

 pinMode(segE, OUTPUT);

 pinMode(segF, OUTPUT);

 pinMode(segG, OUTPUT);

 pinMode(digit1, OUTPUT);

 pinMode(digit2, OUTPUT);

 pinMode(digit3, OUTPUT);

 pinMode(digit4, OUTPUT);

 pinMode(13, OUTPUT);

}

void loop() {

 //long startTime = millis();

 displayNumber(millis()/1000);

 //while((millis() - startTime) < 2000) {

 //displayNumber(1217);

 //}

 //delay(1000);

IDUINO for maker’s life

www.openplatform.cc

}

//Given a number, we display 10:22

//After running through the 4 numbers, the display is left turned off

//Display brightness

//Each digit is on for a certain amount of microseconds

//Then it is off until we have reached a total of 20ms for the function call

//Let's assume each digit is on for 1000us

//If each digit is on for 1ms, there are 4 digits, so the display is off for 16ms.

//That's a ratio of 1ms to 16ms or 6.25% on time (PWM).

//Let's define a variable called brightness that varies from:

//5000 blindingly bright (15.7mA current draw per digit)

//2000 shockingly bright (11.4mA current draw per digit)

//1000 pretty bright (5.9mA)

//500 normal (3mA)

//200 dim but readable (1.4mA)

//50 dim but readable (0.56mA)

//5 dim but readable (0.31mA)

//1 dim but readable in dark (0.28mA)

void displayNumber(int toDisplay) {

#define DISPLAY_BRIGHTNESS 500

#define DIGIT_ON HIGH

#define DIGIT_OFF LOW

 long beginTime = millis();

 for(int digit = 4 ; digit > 0 ; digit--) {

 //Turn on a digit for a short amount of time

 switch(digit) {

 case 1:

 digitalWrite(digit1, DIGIT_ON);

 break;

 case 2:

 digitalWrite(digit2, DIGIT_ON);

 break;

 case 3:

 digitalWrite(digit3, DIGIT_ON);

 break;

 case 4:

 digitalWrite(digit4, DIGIT_ON);

IDUINO for maker’s life

www.openplatform.cc

 break;

 }

 //Turn on the right segments for this digit

 lightNumber(toDisplay % 10);

 toDisplay /= 10;

 delayMicroseconds(DISPLAY_BRIGHTNESS); //Display this digit for a fraction of a

second (between 1us and 5000us, 500 is pretty good)

 //Turn off all segments

 lightNumber(10);

 //Turn off all digits

 digitalWrite(digit1, DIGIT_OFF);

 digitalWrite(digit2, DIGIT_OFF);

 digitalWrite(digit3, DIGIT_OFF);

 digitalWrite(digit4, DIGIT_OFF);

 }

 while((millis() - beginTime) < 10) ; //Wait for 20ms to pass before we paint the

display again

}

//Given a number, turns on those segments

//If number == 10, then turn off number

void lightNumber(int numberToDisplay) {

#define SEGMENT_ON LOW

#define SEGMENT_OFF HIGH

 switch (numberToDisplay){

 case 0:

 digitalWrite(segA, SEGMENT_ON);

 digitalWrite(segB, SEGMENT_ON);

 digitalWrite(segC, SEGMENT_ON);

 digitalWrite(segD, SEGMENT_ON);

 digitalWrite(segE, SEGMENT_ON);

 digitalWrite(segF, SEGMENT_ON);

 digitalWrite(segG, SEGMENT_OFF);

 break;

 case 1:

IDUINO for maker’s life

www.openplatform.cc

 digitalWrite(segA, SEGMENT_OFF);

 digitalWrite(segB, SEGMENT_ON);

 digitalWrite(segC, SEGMENT_ON);

 digitalWrite(segD, SEGMENT_OFF);

 digitalWrite(segE, SEGMENT_OFF);

 digitalWrite(segF, SEGMENT_OFF);

 digitalWrite(segG, SEGMENT_OFF);

 break;

 case 2:

 digitalWrite(segA, SEGMENT_ON);

 digitalWrite(segB, SEGMENT_ON);

 digitalWrite(segC, SEGMENT_OFF);

 digitalWrite(segD, SEGMENT_ON);

 digitalWrite(segE, SEGMENT_ON);

 digitalWrite(segF, SEGMENT_OFF);

 digitalWrite(segG, SEGMENT_ON);

 break;

 case 3:

 digitalWrite(segA, SEGMENT_ON);

 digitalWrite(segB, SEGMENT_ON);

 digitalWrite(segC, SEGMENT_ON);

 digitalWrite(segD, SEGMENT_ON);

 digitalWrite(segE, SEGMENT_OFF);

 digitalWrite(segF, SEGMENT_OFF);

 digitalWrite(segG, SEGMENT_ON);

 break;

 case 4:

 digitalWrite(segA, SEGMENT_OFF);

 digitalWrite(segB, SEGMENT_ON);

 digitalWrite(segC, SEGMENT_ON);

 digitalWrite(segD, SEGMENT_OFF);

 digitalWrite(segE, SEGMENT_OFF);

 digitalWrite(segF, SEGMENT_ON);

 digitalWrite(segG, SEGMENT_ON);

 break;

 case 5:

 digitalWrite(segA, SEGMENT_ON);

 digitalWrite(segB, SEGMENT_OFF);

 digitalWrite(segC, SEGMENT_ON);

 digitalWrite(segD, SEGMENT_ON);

IDUINO for maker’s life

www.openplatform.cc

 digitalWrite(segE, SEGMENT_OFF);

 digitalWrite(segF, SEGMENT_ON);

 digitalWrite(segG, SEGMENT_ON);

 break;

 case 6:

 digitalWrite(segA, SEGMENT_ON);

 digitalWrite(segB, SEGMENT_OFF);

 digitalWrite(segC, SEGMENT_ON);

 digitalWrite(segD, SEGMENT_ON);

 digitalWrite(segE, SEGMENT_ON);

 digitalWrite(segF, SEGMENT_ON);

 digitalWrite(segG, SEGMENT_ON);

 break;

 case 7:

 digitalWrite(segA, SEGMENT_ON);

 digitalWrite(segB, SEGMENT_ON);

 digitalWrite(segC, SEGMENT_ON);

 digitalWrite(segD, SEGMENT_OFF);

 digitalWrite(segE, SEGMENT_OFF);

 digitalWrite(segF, SEGMENT_OFF);

 digitalWrite(segG, SEGMENT_OFF);

 break;

 case 8:

 digitalWrite(segA, SEGMENT_ON);

 digitalWrite(segB, SEGMENT_ON);

 digitalWrite(segC, SEGMENT_ON);

 digitalWrite(segD, SEGMENT_ON);

 digitalWrite(segE, SEGMENT_ON);

 digitalWrite(segF, SEGMENT_ON);

 digitalWrite(segG, SEGMENT_ON);

 break;

 case 9:

 digitalWrite(segA, SEGMENT_ON);

 digitalWrite(segB, SEGMENT_ON);

 digitalWrite(segC, SEGMENT_ON);

 digitalWrite(segD, SEGMENT_ON);

 digitalWrite(segE, SEGMENT_OFF);

 digitalWrite(segF, SEGMENT_ON);

 digitalWrite(segG, SEGMENT_ON);

 break;

IDUINO for maker’s life

www.openplatform.cc

 case 10:

 digitalWrite(segA, SEGMENT_OFF);

 digitalWrite(segB, SEGMENT_OFF);

 digitalWrite(segC, SEGMENT_OFF);

 digitalWrite(segD, SEGMENT_OFF);

 digitalWrite(segE, SEGMENT_OFF);

 digitalWrite(segF, SEGMENT_OFF);

 digitalWrite(segG, SEGMENT_OFF);

 break;

 }

}

*******code End*******

18. Chapter15: 8*8 LED Matrix

IDUINO for maker’s life

www.openplatform.cc

Introduction

 With low-voltage scanning, LED dot-matrix displays have advantages such as

power saving, long service life, low cost, high brightness, wide angle of view, long

visual range, waterproof, and numerous specifications. LED dot-matrix displays can

meet the needs of different applications and thus have a broad development

prospect. This time, we will conduct an LED dot-matrix experiment to experience its

charm firsthand.

The 8*8 dot-matrix is made up of sixty-four LEDs, and each LED is placed at the cross

point of a row and a column. When the electrical level of a certain row is 1 and the

electrical level of a

certain column is 0, the corresponding LED will light up. If you want to light the LED

on the first

dot, you should set pin 9 to high level and pin 13 to low level. If you want to light

LEDs on the first row, you should set pin 9 to high level and pins 13, 3, 4, 10, 6, 11, 15

and 16 to low level. If you want to light the LEDs on the first column, set pin 13 to

low level and pins 9, 14, 8, 12, 1, 7, 2 and 5 to high level.

The internal view of a dot-matrix is shown as follows:

IDUINO for maker’s life

www.openplatform.cc

Example Code

*******code Begin*******

// set an array to store character of “0”

unsigned char Text[]={0x00,0x1c,0x22,0x22,0x22,0x22,0x22,0x1c};

void Draw_point(unsigned char x,unsigned char y)// point drawing function

{ clear_();

 digitalWrite(x+2, HIGH);

 digitalWrite(y+10, LOW);

 delay(1);

}

void show_num(void)// display function, call point drawing function

{

 unsigned char i,j,data;

 for(i=0;i<8;i++)

 {

 data=Text[i];

 for(j=0;j<8;j++)

 {

 if(data & 0x01)Draw_point(j,i);

 data>>=1;

 }

 }

}

void setup(){

IDUINO for maker’s life

www.openplatform.cc

int i = 0 ;

for(i=2;i<18;i++)

{

 pinMode(i, OUTPUT);

 }

 clear_();

}

void loop()

{ show_num();

}

void clear_(void)// clear screen

{for(int i=2;i<10;i++)

 digitalWrite(i, LOW);

 for(int i=0;i<8;i++)

 digitalWrite(i+10, HIGH);

}

*******code End*******

