# **MORNSUN®** # K78XXT-500 Series # WIDE INPUT, NON-ISOLATED & REGULATED SMD PACKAGE SINGLE OUTPUT #### **RoHS** 500 500 95 96 90 92 #### **PRODUCT PROGRAM** • Efficiency up to 96% Input Voltage (VDC) Output Voltage (VDC) Efficiency (%)(Typ.) Current • No need for heat sinks Part Number Adjust (mA) Nominal Range Normal Vin (min.) Vin (max.) • 0.5AMP SMD package Range Wide input voltage range(4.5V~28V) K7803T-500 1.8-5.5 75 12 4.5-28 3.3 500 Adjustable output voltage K7805T-500 12 6.0-28 5.0 2.5-8.0 500 94 81 • Remote ON/OFF control K7809T-500 24 11-28 9.0 3.0-11.5 500 95 87 24 #### Note: K7812T-500 K7815T-500 - 1. Answer for Vin-Vo>2V if needed to adjust the output voltage; - 2. If input voltage above specified may cause permanent damage to the device. 14-28 17-28 12 15 4.5-13.5 4.5-15.5 3. K7812T-500, K7815T-500 is not allowed to operate under no load. #### **FEATURES** - •Short circuit protection, Thermal shutdown - Very low shutdown current - Super low ripple and noise #### **APPLICATIONS** The K78xxT-500 Series with high efficiency switching regulators are ideally supply for space constrained mobile applications. They are no need for any heat sinks, even if operate at +85°C. The additional features include remote ON/OFF control and adjustable output voltage. Super low ripple and noise of typically only 10mV and a shutdown input current of typically only 15uA. #### RECOMMENDED REFLOW **SOLDERING PROFILE** Remark: The curve applies only to the hot air reflow soldering #### MORNSUN Science & Technology Co., Ltd. Address: No. 5, Kehui St. 1, Kehui development center, Science Ave., Guangzhou Science City, Luogang district, Guangzhou, P.R. China. Tel: 86-20-38601850 Fax:86-20-38601272 Http://www.mornsun-power.com | Conditions | Min. | Тур. | Max. | Units | | |------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--| | See selection guide | 4.5 | 12/24 | 28 | V | | | See selection guide | 1.8 | | 15.5 | V | | | Input voltage range at full load | | ±2 | ±3 | | | | Input voltage range at full load | | ±0.2 | ±0.5 | % | | | Nominal Input ,10% to 100% load | | ±0.3 | ±0.75 | | | | 20MHz bandwidth | | 10 | 25 | mVp-p | | | Hiccup mode | | | | | | | Continuous, automatic recovery | | | | | | | | | 1.8 | | Α | | | 100%<->10% load | | ±30 | ±75 | mV | | | Normal input (3.3V, 5V output) | | 15 | | mA | | | Internal IC junction | | 160 | | °C | | | -40°C to +85°C ambient | | | ±0.02 | %/°C | | | | | | 1000 | μF | | | ON: open or 1.5 <vc≤6v<br>OFF:GND or 0V<vc<1v< td=""><td></td><td>2</td><td></td><td>μA</td></vc<1v<></vc≤6v<br> | | 2 | | μA | | | | | 15 | 30 | μA | | | ON/OFF shutdown threshold voltage | | | 1.4 | V | | | | -40 | | +85 | | | | | +100 | | °C | | | | | -55 | | +125 | | | | 1.5mm from case for 10 seconds | | | 300 | | | | | | | 95 | % | | | | F | Free Air Convection | | | | | | Plastic (UL94-V0) | | | 0) | | | (MIL-HDBK-217F,+25°C) | 2000 | | | K hours | | | | | 2.3 | | g | | | | See selection guide See selection guide Input voltage range at full load Input voltage range at full load Nominal Input ,10% to 100% load 20MHz bandwidth Hiccup mode Continuous, automatic recovery 100%<->>10% load Normal input (3.3V, 5V output) Internal IC junction -40°C to +85°C ambient ON: open or 1.5 <vc≤6v 0v<vc<1v="" off:gnd="" oltage<="" or="" td=""><td>See selection guide See selection guide Input voltage range at full load Input voltage range at full load Input voltage range at full load Nominal Input ,10% to 100% load 20MHz bandwidth Hiccup mode Continuous, automatic recovery 100%&lt;-&gt;10% load Normal input (3.3V, 5V output) Internal IC junction -40°C to +85°C ambient ON: open or 1.5<vc≤6v -40="" 0v<vc<1v="" 1.1="" 1.5mm="" 10="" case="" for="" from="" off:gnd="" oltage="" or="" seconds<="" td=""><td>See selection guide 1.8 Input voltage range at full load 20MHz bandwidth Hiccup mode Continuous, automatic recovery 1.8 100%&lt;-&gt;10% load 15 Internal IC junction 40°C to +85°C ambient ON: open or 1.5&lt;0&lt;60V OFF:GND or 0V&lt;0&lt;1V 15 Oltage 1.1 1.25 1.5mm from case for 10 seconds Free Air ( Plastic ( (MIL-HDBK-217F,+25°C) 2000</td><td>See selection guide 4.5 12/24 28 See selection guide 1.8 15.5 Input voltage range at full load ±2 ±3 Input voltage range at full load ±0.2 ±0.5 Nominal Input ,10% to 100% load ±0.3 ±0.75 20MHz bandwidth 10 25 Hiccup mode Continuous, automatic recovery Continuous, automatic recovery 1.8 100% +30 ±75 Normal input (3.3V, 5V output) 15 Internal IC junction 160 -40°C to +85°C ambient ±0.02 ON: open or 1.5<vc≤6v<br>OFF:GND or 0V<vc<1v< td=""> 2 Integration of the properties of</vc<1v<></vc≤6v<br></td></vc≤6v></td></vc≤6v> | See selection guide See selection guide Input voltage range at full load Input voltage range at full load Input voltage range at full load Nominal Input ,10% to 100% load 20MHz bandwidth Hiccup mode Continuous, automatic recovery 100%<->10% load Normal input (3.3V, 5V output) Internal IC junction -40°C to +85°C ambient ON: open or 1.5 <vc≤6v -40="" 0v<vc<1v="" 1.1="" 1.5mm="" 10="" case="" for="" from="" off:gnd="" oltage="" or="" seconds<="" td=""><td>See selection guide 1.8 Input voltage range at full load 20MHz bandwidth Hiccup mode Continuous, automatic recovery 1.8 100%&lt;-&gt;10% load 15 Internal IC junction 40°C to +85°C ambient ON: open or 1.5&lt;0&lt;60V OFF:GND or 0V&lt;0&lt;1V 15 Oltage 1.1 1.25 1.5mm from case for 10 seconds Free Air ( Plastic ( (MIL-HDBK-217F,+25°C) 2000</td><td>See selection guide 4.5 12/24 28 See selection guide 1.8 15.5 Input voltage range at full load ±2 ±3 Input voltage range at full load ±0.2 ±0.5 Nominal Input ,10% to 100% load ±0.3 ±0.75 20MHz bandwidth 10 25 Hiccup mode Continuous, automatic recovery Continuous, automatic recovery 1.8 100% +30 ±75 Normal input (3.3V, 5V output) 15 Internal IC junction 160 -40°C to +85°C ambient ±0.02 ON: open or 1.5<vc≤6v<br>OFF:GND or 0V<vc<1v< td=""> 2 Integration of the properties of</vc<1v<></vc≤6v<br></td></vc≤6v> | See selection guide 1.8 Input voltage range at full load 20MHz bandwidth Hiccup mode Continuous, automatic recovery 1.8 100%<->10% load 15 Internal IC junction 40°C to +85°C ambient ON: open or 1.5<0<60V OFF:GND or 0V<0<1V 15 Oltage 1.1 1.25 1.5mm from case for 10 seconds Free Air ( Plastic ( (MIL-HDBK-217F,+25°C) 2000 | See selection guide 4.5 12/24 28 See selection guide 1.8 15.5 Input voltage range at full load ±2 ±3 Input voltage range at full load ±0.2 ±0.5 Nominal Input ,10% to 100% load ±0.3 ±0.75 20MHz bandwidth 10 25 Hiccup mode Continuous, automatic recovery Continuous, automatic recovery 1.8 100% +30 ±75 Normal input (3.3V, 5V output) 15 Internal IC junction 160 -40°C to +85°C ambient ±0.02 ON: open or 1.5 <vc≤6v<br>OFF:GND or 0V<vc<1v< td=""> 2 Integration of the properties of</vc<1v<></vc≤6v<br> | | # **TYPICAL TEMPERATURE CURVE** # **EXTERNAL CAPACITOR TABLE** | Part<br>Number | C1 (ceramic capacitor) | C2<br>(ceramic capacitor) | | | |----------------|------------------------|---------------------------|--|--| | K7803T-500 | 10uF/50V | 22uF/16V | | | | K7805T-500 | 10uF/50V | 22uF/16V | | | | K7809T-500 | 10uF/50V | 22uF/16V | | | | K7812T-500 | 10uF/50V | 10uF/25V | | | | K7815T-500 | 10uF/50V | 10uF/25V | | | # STANDARD APPLICATION CIRCUIT - 1. C1,C2: Choose a ceramic type capacitors; C3 is require ,for best performance , use a 100µF or more capacitor please. - 2. C1,C2 are require and should be placed close to the pins of the converter, with shortest possible traces. - 3. No parallel connection or plug and play. | Model | K7803 | T-500 | K7805T-500<br>5.0V<br>2.5V-8V | | 9V<br>3V-11.5V | | K7812T-500<br>12V<br>4.5V-13.5V | | K7815T-500<br>15V<br>4.5V-15.5V | | |-------------------|--------|--------|-------------------------------|--------|----------------|--------|---------------------------------|--------|---------------------------------|-------| | Vo (nominal) | 3.3 | 3V | | | | | | | | | | Adjusted range | 1.8V- | -5.5V | | | | | | | | | | Regulated voltage | R1(kΩ) | R2(kΩ) | R1(kΩ) | R2(kΩ) | R1(kΩ) | R2(kΩ) | R1(kΩ) | R2(kΩ) | R1(kΩ) | R2(kΩ | | 1.8V | 24.31 | | | | | | | | | | | 2.5V | 98.9 | | 25.28 | | | | | | | | | 3.0V | 364 | | 47.6 | | 3.1 | | | | | | | 3.3V | | | 67.3 | | 5.79 | | | | | | | 3.6V | | 129.1 | 95.8 | | 8.47 | | | | | | | 3.9V | | 59.1 | 140.9 | | 11.8 | | | | | | | 4.5V | | 24.3 | 411 | | 19.14 | | 4.55 | | 2.69 | | | 4.9V | | 15.25 | 2060 | | 25.77 | | 8.05 | | 5.55 | | | 5.0V | | 14.05 | | | 27.3 | | 9.16 | | 6.17 | | | 5.1V | | 12.8 | | 208.5 | 29.22 | | 10.41 | | 6.98 | | | 5.5V | | 8.65 | | 58.5 | 37.8 | | 15 | | 10 | | | 6.5V | | | | 15.57 | 70.8 | | 29.8 | | 18.5 | | | 7.2V | | | | 7.8 | 115.3 | | 43.5 | | 26.2 | | | 8.0V | | | | 3.15 | 243.1 | | 64.8 | | 36.7 | | | 9.0V | | | | | | | 105 | | 52.9 | | | 10.0V | | | | | | 18.84 | 180.6 | | 76.3 | | | 11.0V | | | | | | 4.47 | 370 | | 111 | | | 11.5V | | | | | | 1.61 | 635 | | 134.1 | | | 12.0V | | | | | | | | | 167.7 | | | 13.0V | | | | | | | | 40.6 | 277.8 | | | 13.5V | | | | | | | | 15 | 385 | | | 14.0V | | | | | | | | | 586 | | | 14.5V | | | | | | | | | 1128 | | | 15.0V | | | | | | | | | | | | 15.5V | | | | | | | | | | 88.2 | Note: The above dates only are as reference, you could make corresponding adjustment with actual output when they are at practical application. # **TEST CONFIGURATIONS (TA=25°C)** 1 Efficiency and Output Voltage Ripple Test 2 Start-up and Load Transient Response Test ### **APPLICATION EXAMPLE** - 1. To reduce output ripple, it is recommended to add a LC filter to output port. - L: Recommended parameter 10µH ~ 47µH. #### **SHUTDOWN CONTROL** The ON/OFF pin provides several features for adjusting and sequencing the power supply, a user has the flexibility of using the ON/OFF pin as: 1) A digital on/off control by pulling down the ON/OFF pin with an open-drain transistor. 2) Line UVLO. If desired to achieve a UVLO voltage, an resistor divider from Vin to ON/OFF to GND can be used to disable the converter until a higher input voltage is achieved. For example, it is not useful for a converter with 12V output to start up with a 12V input voltage, as the output cannot teach regulation. To enable the converter when the input voltage reaches 14V, a 51kΩ/5kΩ resistor divider from Vin to GND can be connected to the ON/OFF pin. Both the precision 1.25V threshold and 150mV hysteresis are multiplied by the resistor ratio, providing a proportional 12% hysteresis for any startup threshold. So, the turn off threshold would be between 12.3V to 15.7V. 3) Power supply sequencing. By connecting a small capacitor from ON/OFF to GND, the 2µA current source and 1.25V threshold can provide a stable and predictable delay between startup of multiple power supplies. For example, a startup delay of roughly 64mS is provided using 100nF, and roughly 136mS by using 200nF. # **CHARACTERISTIC CURVE (TA=25°C)** ## **Efficiency and Output Voltage Ripple** Efficiency VS Output Load (Vin=Norm) Output Voltage Ripple VS Output Load (Vin=Norm) Efficiency VS Input Voltage (Full Load) Output Voltage Ripple VS Input Voltage (Full Load) #### Note: - 1. All specifications measured at Ta=25°C, humidity<75%, nominal input voltage and rated output load unless otherwise specified. - 2. In this datasheet, all the test methods of indications are based on corporate standards.