March 2015 # FGH60N60SFD 600 V, 60 A Field Stop IGBT ### **Features** - High Current Capability - Low Saturation Voltage: V<sub>CE(sat)</sub> = 2.3 V @ I<sub>C</sub> = 60 A - High Input Impedance - Fast Switching - RoHS Compliant ### **Applications** • Solar Inverter, UPS, Welder, PFC ## **General Description** Using novel field stop IGBT technology, Fairchild's field stop IGBTs offer the optimum performance for solar inverter, UPS, welder and PFC applications where low conduction and switching losses are essential. ## **Absolute Maximum Ratings** | Symbol | Description | | Ratings | Unit | |---------------------|-------------------------------------------------------------------------|-------------------------|-------------|------| | V <sub>CES</sub> | Collector to Emitter Voltage | | 600 | V | | V | Gate to Emitter Voltage | ±20 | V | | | $V_{GES}$ | Transient Gate-to-Emitter Voltage | | ±30 | V | | I <sub>C</sub> | Collector Current | @ T <sub>C</sub> = 25°C | 120 | A | | | Collector Current | $@ T_C = 100^{\circ}C$ | 60 | A | | I <sub>CM (1)</sub> | Pulsed Collector Current @ T <sub>C</sub> = 25°C | | 180 | Α | | P <sub>D</sub> | Maximum Power Dissipation | @ T <sub>C</sub> = 25°C | 378 | W | | | Maximum Power Dissipation | $@ T_C = 100^{\circ}C$ | 151 | W | | T <sub>J</sub> | Operating Junction Temperature | | -55 to +150 | °C | | T <sub>stg</sub> | Storage Temperature Range | -55 to +150 | °C | | | T <sub>L</sub> | Maximum Lead Temp. for soldering Purposes, 1/8" from case for 5 seconds | 300 | °C | | #### Notes: 1: Repetitive test, Pulse width limited by max. juntion temperature ### **Thermal Characteristics** | Symbol | Parameter | Тур. | Max. | Unit | |------------------------|-----------------------------------------|------|------|------| | $R_{\theta JC}(IGBT)$ | Thermal Resistance, Junction to Case | - | 0.33 | °C/W | | $R_{\theta JC}(Diode)$ | Thermal Resistance, Junction to Case | - | 1.1 | °C/W | | $R_{\theta JA}$ | Thermal Resistance, Junction to Ambient | - | 40 | °C/W | # **Package Marking and Ordering Information** | Part Number | Top Mark | Package | Packing Method | Reel Size | Tape Width | Quantity | |---------------|-------------|---------|----------------|-----------|------------|----------| | FGH60N60SFDTU | FGH60N60SFD | TO-247 | Tube | N/A | N/A | 30 | # Electrical Characteristics of the IGBT $T_C = 25$ °C unless otherwise noted | Symbol | Parameter | Test Conditions | Min. | Тур. | Max. | Unit | |-----------------------------------------|----------------------------------------------|-----------------------------------------------------------------------------|------|------|------|------| | Off Charac | teristics | | | | • | | | BV <sub>CES</sub> | Collector to Emitter Breakdown Voltage | $V_{GE} = 0 \text{ V}, I_{C} = 250 \mu\text{A}$ | 600 | - | - | V | | ΔBV <sub>CES</sub><br>/ ΔT <sub>J</sub> | Temperature Coefficient of Breakdown Voltage | $V_{GE} = 0 \text{ V}, I_{C} = 250 \mu\text{A}$ | - | 0.4 | - | V/°C | | I <sub>CES</sub> | Collector Cut-Off Current | $V_{CE} = V_{CES}, V_{GE} = 0 V$ | - | - | 250 | μΑ | | I <sub>GES</sub> | G-E Leakage Current | $V_{GE} = V_{GES}, V_{CE} = 0 V$ | - | - | ±400 | nA | | On Charac | teristics | | | | | | | V <sub>GE(th)</sub> | G-E Threshold Voltage | $I_C = 250 \mu\text{A}, V_{CE} = V_{GE}$ | 4.0 | 5.0 | 6.5 | V | | · / | | I <sub>C</sub> = 60 A, V <sub>GE</sub> = 15 V | - | 2.3 | 2.9 | V | | V <sub>CE(sat)</sub> | Collector to Emitter Saturation Voltage | $I_C = 60 \text{ A}, V_{GE} = 15 \text{ V},$<br>$T_C = 125^{\circ}\text{C}$ | - | 2.5 | - | V | | Dynamic C | haracteristics | | | | | | | C <sub>ies</sub> | Input Capacitance | | - | 2820 | - | pF | | C <sub>oes</sub> | Output Capacitance | $V_{CE} = 30 \text{ V}, V_{GE} = 0 \text{ V},$<br>f = 1 MHz | - | 350 | - | pF | | C <sub>res</sub> | Reverse Transfer Capacitance | 1 - 1 1/11/12 | - | 140 | - | pF | | Switching | Characteristics | | | | | | | t <sub>d(on)</sub> | Turn-On Delay Time | | - | 22 | - | ns | | t <sub>r</sub> | Rise Time | | - | 42 | - | ns | | t <sub>d(off)</sub> | Turn-Off Delay Time | $V_{CC} = 400 \text{ V}, I_{C} = 60 \text{ A},$ | - | 134 | - | ns | | t <sub>f</sub> | Fall Time | $R_G = 5 \Omega$ , $V_{GE} = 15 V$ , | - | 31 | 62 | ns | | E <sub>on</sub> | Turn-On Switching Loss | Inductive Load, T <sub>C</sub> = 25°C | - | 1.79 | - | mJ | | E <sub>off</sub> | Turn-Off Switching Loss | | - / | 0.67 | - | mJ | | E <sub>ts</sub> | Total Switching Loss | | - | 2.46 | - | mJ | | t <sub>d(on)</sub> | Turn-On Delay Time | | - | 22 | - / | ns | | t <sub>r</sub> | Rise Time | | - | 44 | - 🗸 | ns | | t <sub>d(off)</sub> | Turn-Off Delay Time | $V_{CC} = 400 \text{ V}, I_{C} = 60 \text{ A},$ | - | 144 | - | ns | | t <sub>f</sub> | Fall Time | $R_G = 5 \Omega$ , $V_{GE} = 15 V$ , | - | 43 | - | ns | | E <sub>on</sub> | Turn-On Switching Loss | Inductive Load, T <sub>C</sub> = 125°C | - | 1.88 | - | mJ | | E <sub>off</sub> | Turn-Off Switching Loss | | - | 1.0 | - | mJ | | E <sub>ts</sub> | Total Switching Loss | | - | 2.88 | - \ | mJ | | Qg | Total Gate Charge | | - | 198 | - | nC | | Q <sub>ge</sub> | Gate to Emitter Charge | $V_{CE} = 400 \text{ V}, I_{C} = 60 \text{ A},$<br>$V_{GE} = 15 \text{ V}$ | - | 22 | - | nC | | Q <sub>gc</sub> | Gate to Collector Charge | *GE = 10 * | - | 106 | - | nC | # Electrical Characteristics of the Diode $T_C = 25^{\circ}C$ unless otherwise noted | Symbol | Parameter | Test Conditions | | Min. | Тур. | Max | Unit | |-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------|------|------|-----|------| | V <sub>FM</sub> | Diode Forward Voltage | I <sub>E</sub> = 30 A | $T_C = 25^{\circ}C$ | - | 2.0 | 2.6 | V | | | 2.000 r ormana romage | ., | $T_{\rm C} = 125^{\rm o}{\rm C}$ | - | 1.8 | - | • | | t <sub>rr</sub> | Diode Reverse Recovery Time | | $T_C = 25^{\circ}C$ | - | 47 | - | ns | | 11 | Block Nevelse Necestry Time | I <sub>F</sub> = 30 A, di <sub>F</sub> /dt = 200 A/μs | $T_{\rm C} = 125^{\circ}{\rm C}$ | - | 179 | i | | | Q <sub>rr</sub> | Q <sub>rr</sub> Diode Reverse Recovery Charge | η - 00 / ι, αιρ/αι - 200 //μ3 | $T_C = 25^{\circ}C$ | - | 83 | i | nC | | <b>~</b> II | 2 is a control of the | | $T_{\rm C} = 125^{\rm o}{\rm C}$ | - | 567 | - | | Figure 1. Typical Output Characteristics **Figure 2. Typical Output Characteristics** Figure 3. Typical Saturation Voltage Characteristics Figure 4. Transfer Characteristics Figure 5. Saturation Voltage vs. Case Temperature at Variant Current Level Figure 6. Saturation Voltage vs. $V_{GE}$ Figure 7. Saturation Voltage vs. V<sub>GE</sub> Figure 9. Capacitance Characteristics Figure 11. SOA Characteristics Figure 8. Saturation Voltage vs. V<sub>GE</sub> Figure 10. Gate charge Characteristics Figure 12. Turn off Switching SOA Characteristics Figure 13. Turn-on Characteristics vs. Gate Resistance Figure 14. Turn-off Characteristics vs. Gate Resistance Figure 15. Turn-on Characteristics vs. Collector Current Figure 16. Turn-off Characteristics vs. Collector Current Figure 17. Switching Loss vs Gate Resistance Figure 18. Switching Loss vs Collector Current Figure 19. Forward Characteristics Figure 20. Reverse Current Figure 21. Stored Charge Figure 22. Reverse Recovery Time Figure 23. Transient Thermal Impedance of IGBT ### NOTES: UNLESS OTHERWISE SPECIFIED. - A. PACKAGE REFERENCE: JEDEC TO-247, ISSUE E, VARIATION AB, DATED JUNE, 2004. B. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD - FLASH, AND TIE BAR EXTRUSIONS. - C. ALL DIMENSIONS ARE IN MILLIMETERS. - D. DRAWING CONFORMS TO ASME Y14.5 1994 DOES NOT COMPLY JEDEC STANDARD VALUE F. DRAWING FILENAME: MKT-TO247A03\_REV03 #### TRADEMARKS The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks. $\begin{array}{lll} \mathsf{AccuPower^{\mathsf{TM}}} & \mathsf{F-PFS^{\mathsf{TM}}} \\ \mathsf{AttitudeEngine^{\mathsf{TM}}} & \mathsf{FRFET}^{\mathsf{B}} \end{array}$ Aminda® Global Power Resource SM AX-CAP®\* GreenBridne™ AX-CAP<sup>®\*</sup> GreenBridge™ BitSiC™ Green FPS™ Build it Now™ Green FPS™ e-Series™ Current Transfer Logic™ Making Small Speakers Sound Louder DEUXPEED® and Better™ Dual Cool™ MegaBuck™ EcoSPARK® MICROCOUPLER™ EfficientMax™ MicroFET™ EfficientMax™ MicroFET™ ESBC™ MicroPak™ MicroPak™ MicroPak2™ MillerDrive™ MillerDrive™ MotionMax™ MotionMax™ Fairchild Semiconductor® FACT Quiet Series™ FACT® FastvCore™ FETBench™ FPS™ MotionMax" MotionGrid® MTi® MTx® MTx® MVN® mWSaver® OptoHiT™ OPTOLOGIC® OPTOPLANAR® Power Supply WebDesigner™ PowerTrench® PowerXS™ Programmable Active Droop™ QFET<sup>®</sup> QS™ Quiet Series™ RapidConfigure™ Saving our world, 1mW/W/kW at a time™ SignalWise™ SmartMax™ SMART START™ Solutions for Your Success™ SPM® STEALTH™ SuperFET® SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS® SyncFET™ Sync-Lock™ SenDes\* UHC® Ultra FRFET™ UniFET™ VCX™ VisualMax™ VoltagePlus™ XS™ XSENS™ 仙童® SYSTEM SYSTEM TinyBoost<sup>®</sup> TinyBuck<sup>®</sup> TinyCalc™ TinyLogic<sup>®</sup> TINYOPTO™ TinvPower™ TinyPWM™ TinyWire™ TranSiC™ սSerDes™ TriFault Detect™ TRUECURRENT®\* \* Trademarks of System General Corporation, used under license by Fairchild Semiconductor. #### DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR WEBSITE AT <a href="http://www.fairchildsemi.com">http://www.fairchildsemi.com</a>, FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS. #### AUTHORIZED USE Unless otherwise specified in this data sheet, this product is a standard commercial product and is not intended for use in applications that require extraordinary levels of quality and reliability. This product may not be used in the following applications, unless specifically approved in writing by a Fairchild officer: (1) automotive or other transportation, (2) military/aerospace, (3) any safety critical application – including life critical medical equipment – where the failure of the Fairchild product reasonably would be expected to result in personal injury, death or property damage. Customer's use of this product is subject to agreement of this Authorized Use policy. In the event of an unauthorized use of Fairchild's product, Fairchild accepts no liability in the event of product failure. In other respects, this product shall be subject to Fairchild's Worldwide Terms and Conditions of Sale, unless a separate agreement has been signed by both Parties. ### ANTI-COUNTERFEITING POLICY Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Terms of Use Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors. #### PRODUCT STATUS DEFINITIONS #### **Definition of Terms** | Definition of Terms | | | | | | |--------------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--| | Datasheet Identification | Product Status | Definition | | | | | Advance Information | Formative / In Design | Datasheet contains the design specifications for product development. Specifications may change in any manner without notice. | | | | | Preliminary | First Production | Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design. | | | | | No Identification Needed | Full Production | Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design. | | | | | Obsolete | Not In Production | Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only. | | | | Rev. 177