

Fischer Connectors SA Saint-Prex, Switzerland Phone +41 21 800 95 95 Fax +41 21 800 39 24 www.fischerconnectors.com mail@fischerconnectors.ch

Crimping Instructions

Assembly Instructions

CONTENTS	Page
• Scope	2
• Introduction	2
Crimp contacts	3 ———
- Wire size and tool chart	3 ———— P/N 💨 🗪 AWG
- Barrel dimensions and stripping length - Table 2	4
Recommended crimp tool settings	5
Crimping and assembly tools	6 ——
Crimp process	7
- Preparation - Stripping - Strand damage and end cuts - Wire insulation damage - Cleanliness - Conductor deformation/birdcaging - Examples of stripping faults	7 8 8 8
- Crimping - Conductor location - Deformation of the crimp barrel - Mechanical properties of the crimped connection - Methods for building up conductor cross-section	10 10 11
Assembly in connector	12
APPENDIX 1 - Wire size	13

© Fischer Connectors SA / All rights reserved

This document is the property of Fischer Connectors SA.

All communications to third parties or the reproduction in any form, even partial, are prohibited without our written consent.

 Document No. 600.00.451
 Rev : 2.4
 Date : 06-Mar-2013
 Established by : TGN
 Approved by : SKE

Assembly Instructions

SCOPE

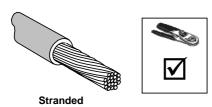
This document provides general guidelines and procedures for understanding and achieving reliable crimp terminations when using Fischer Connectors closed barrel crimp contacts.

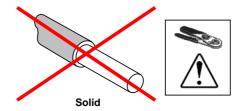
Its contents may slightly differ from individual company guidelines and procedures, and is not intended to replace them. Given the broad variety of cable sizes, stranding and qualities, it is always recommended to perform trials to verify and if necessary adapt the procedure to the particular situation and application.

If a conflict occurs between this document and Fischer Connectors General Catalogue, this document will take precedence.

INTRODUCTION

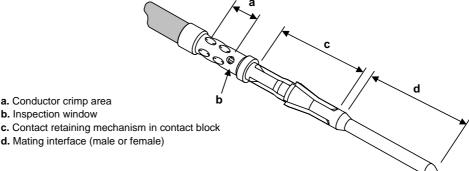
The connection between the wire and the terminal is a critical element of any wire termination.


A good termination is important because it ensures mechanical integrity and electrical performances required for the application.


Crimping is one common method of achieving this connection. It occurs inside the crimp barrel (terminal) of the contact. There are two types of barrels - open and closed. This specification only deals with closed barrels because all contacts referred in this document are screw-machined which is the usual process for producing this type of barrel.

Wire sections are expressed in AWG (American Wire Gauge), mm² or CMA (Circular Mil Area). See conversion table in Appendix 1. Because the wire stranding and insulation type or thickness can vary widely within a particular wire size, it is very important to carefully verify the compatibility between the selected wire and the crimp contact by checking the barrel hole dimensions in Table 1.

Wire types:

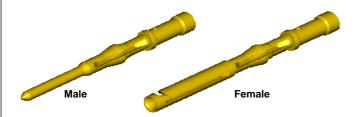

Stranded conductors shall be used for crimping. Solid round conductors may only be used when their suitability has been proven.

The end result of a properly crimped terminal is a reliable mechanical and electrical connection.

Parts of a machined Fischer Connector crimp contact

b. Inspection window

a. Conductor crimp area


d. Mating interface (male or female)

Document No. 600.00.451

CRIMP CONTACTS

Wire Size and Tool Chart

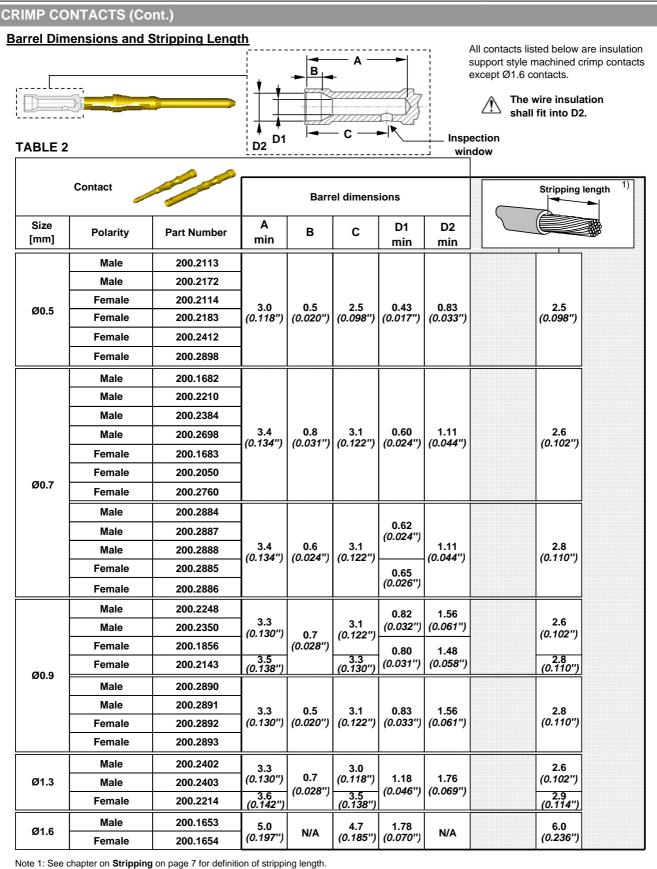
Crimp style connectors are supplied with the appropriate quantity of crimp contacts. However, replacement contacts may be ordered according to table below.

Crimp contacts can be removed from the contact block by means of extraction tools (see extraction tool section).

TABLE 1

Co	ntact			(Core S	Series	i		Ultil	Mate	Positioner	Crimp Tool	Wire Size				
Size [mm]	Polarity	Part Number	Replaces	102	103	1031	104	105	1051	13	18	Part Number	Part Number	AWG			
	Male	200.2113	-	•	•							TX00.300					
	Male	200.2172	-			•	•	•		•		TX00.301					
Ø0.5	Female	200.2114	-	•	•							TX00.302		1)			
6.00	Female	200.2183	-			•	•					TX00.303	TX00.240	32-28 ¹⁾			
	Female	ale 200.2412 - TX00.324										TX00.324					
	Female	200.2898	-					•		•		TX00.373					
	Male	200.2884	200.1682 200.2698	•	•	•	•	•			•	TX00.304					
	Male	200.2887	200.2210						•			TX00.307					
Ø0.7	Male	200.2888	200.2384	•	•	•	•	•				TX00.304	TX00.240	28-24 ¹⁾			
	Female	200.2885	200.1683 200.2760	•	•	•	•					TX00.305					
	Female	200.2886	200.2050					•	•			TX00.306					
	Male	200.2890	200.2248	•	•	•	•					TX00.307					
Ø0.9	Male	200.2891	200.2350					•	•			TX00.308	TX00.240	26-22 ¹⁾			
20.9	Female	200.2892	200.1856	•	•	•	•					TX00.309	1700.240	20-22			
	Female	200.2893	200.2143					•	•			TX00.310					
	Male	200.2402	-		•	•	•					TX00.311					
Ø1.3	Male	200.2403	-					•	•			TX00.338	TX00.240	24-20 ¹⁾			
	Female	200.2214	-		•	•	•	•	•			TX00.312					
Ø1.6	Male	200.1653	-				•	•	•			TX00.313	TX00.242	18-14 ¹⁾			
٥.١٠	Female	200.1654	-					TX00.314	1700.242	10-14 /							

Note 1: Exceptionally for a given AWG, the diameter of some stranded conductor designs could be larger than the hole diameter of the crimp barrel. Make sure that the conductor diameter fits into the hole. See barrel dimensions in **Table 2** on page 4.


Legend

•

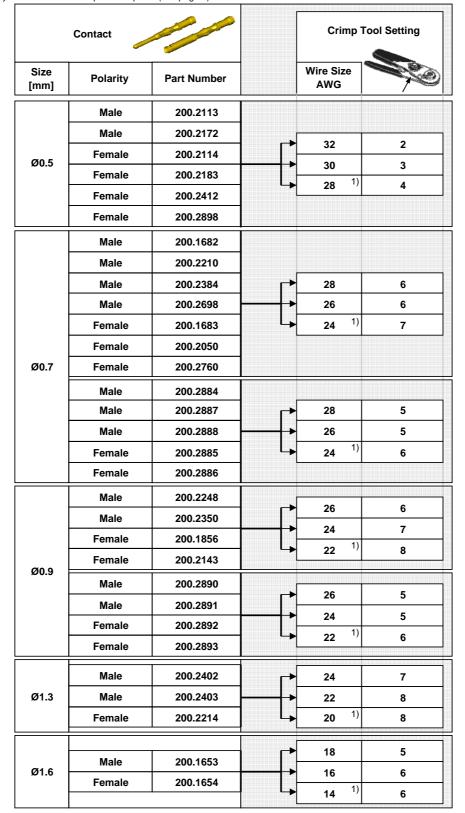
= Compatible

Document No. 600.00.451

Assembly Instructions

Document No. 600.00.451

Rev: 2.4


All dimensions shown are in millimeters (inches) and are for reference only.

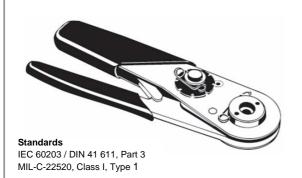
RECOMMENDED CRIMP TOOL SETTINGS

These settings are only for use with the adequate crimp tool (see page 6).

TABLE 3

Note 1: Exceptionally for a given AWG, the diameter of some stranded conductor designs could be larger than the hole diameter of the crimp barrel.

Make sure that the conductor diameter fits into the hole. See barrel dimensions in **Table 2** on page 4.


Document No. 600.00.451

CRIMPING AND ASSEMBLY TOOLS

Crimp Tool ULTRA PRECISION for closed crimp termination

Contact Size [mm]	C Crimp Tool	Part Number
Ø0.5		
Ø0.7	BALMAR 18 - 000	TX00.240
Ø0.9	or DANIELS MH - 800	1 7 00.240
Ø1.3		
Ø1.6	BUCHANAN 615 708	TX00.242

The best choice of precision crimp tools for highly reliable eight indenter crimping per US-MIL, IEC and DIN Specifications.

These hand tools have an integral mechanism to control the crimping operation to the extend that, once the crimping operation has been started, the crimping tool cannot be opened until the crimping cycle has been completed (full-cycle/ratcheting tool).

Positioners have to be ordered according to contact. See **Table 1** on page 3.

Contact Insertion Tool

Material

- Handle: POM (black Delrin®)- Fork: Tool Steel, chrome plated

Contact Size [mm]	Part Number
Ø0.5	TX00.214
Ø0.7	TX00.210
Ø0.9	TX00.211
Ø1.3	TX00.273

Tool for inserting male and female removable crimp contacts into the contact block.

Especially recommended for small gauge and fragile wires.

Contact Extraction Tool

Material

- Housing and Plunger: POM (black Delrin®)
 - Sleeve: Stainless Steel
 - Slide: Tool Steel

Contact Size [mm]	Part Number
Ø0.5	TX00.213
Ø0.7	TX00.200
Ø0.9	TX00.205
Ø1.3	TX00.212
Ø1.6	TX00.201

Tool for extracting male and female removable crimp contacts from the contact block.

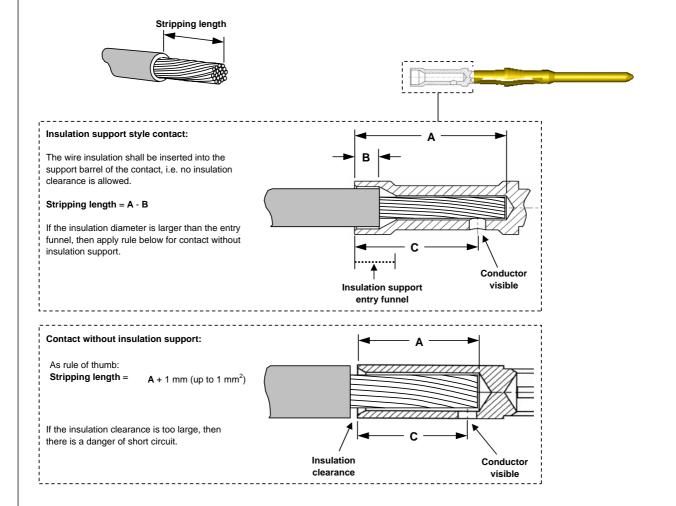
The sleeve of this tool is pushed over the contact, thereby releasing the contact retaining mechanism. The tool plunger is then pushed to eject the contact.

Document No. 600.00.451

CRIMP PROCESS

Stranded conductors shall not be soldered/tin dipped in that part which is intended to be crimped. After crimping, no additional soldering should take place.

Some reasons for failure of crimped joints to meet minimum tensile requirements include nicked wires, nicked or ruptured strands, strand turn back at crimp joint, and ruptured wires outside of the crimped terminal. To avoid these problems, use the correct size wire for the barrel, prepare your wire carefully, and use the proper crimping tool.


PREPARATION

Stripping:

Wire insulation may be removed using chemical, thermal or mechanical strippers. Chemical insulation stripping agent shall be used only for solid wires.

In order to obtain a good and stable crimped connection, it is necessary to strip the wire correctly, i.e. the required stripping length depends on the type and size of the crimp barrel used as described below.

See Table 2 on page 4 for barrel dimensions A and B, position of inspection hole C, and stripping length.

Document No. 600.00.451

Assembly Instructions

CRIMP PROCESS (Cont.)

Strand damage and end cuts:

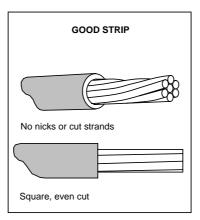
The strands stripped part of the conductor shall not be damaged, for example partly or totally broken, as it can lead to degraded performance. Tools utilized to accomplish wire cut shall be selected and used to provide repetitive and consistent wire cut terminations.

The process of wire cutting shall be performed such that the cut ends are uniform and all strands are the same length.

Do NOT tin the wire with solder before crimping

Wire insulation damage:

Indents on the wire insulation caused by the stripping tool which do not damage the insulation are permitted if there are no cuts, breaks, cracks or splits in insulation. Coatings added over insulation base material such as resin coatings over polyimide are not considered to be part of the insulation.


Cleanliness:

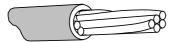
The stripped part of the conductor shall be clean and free of heavy, non-conductive films such as oxides, sulfides, and similar substances., and free from particles of insulation.

Conductor deformation/birdcaging:

The strands shall not be flattened, untwisted, buckled, kinked or otherwise deformed.

The lay of the strands shall be correct. If the lay has been disturbed, it may be restored by a light twist to approximate the original spiral lay of the wire. Care should be taken not to over-twist the strands.

Document No. 600.00.451



Assembly Instructions

CRIMP PROCESS (Cont.)

Examples of Stripping Faults

Distance between stripping blades too small: Strands damaged or removed

Not appropriate stripping tool: Cut at angle

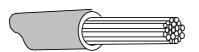
Blunt stripping blades or incorrect distance between the blades: Tapered, torn, split or burred insulation

The grip of the stripping tool is damaged or there are metal shavings within the grip: Insulation is damaged.

> Stripping blades either blunt or not correctly adjusted: Particles of insulation left on the stripped part of the wire

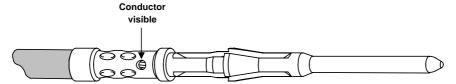
> > Inappropriate handling of stripped wire: Strands untwisted

Inappropriate handling of stripped wire: Strands untwisted and wire bundle splayed


Inappropriate handling of stripped wire: Wire strands extend beyond wire

insulation outside diameter. Wire strands are kinked.

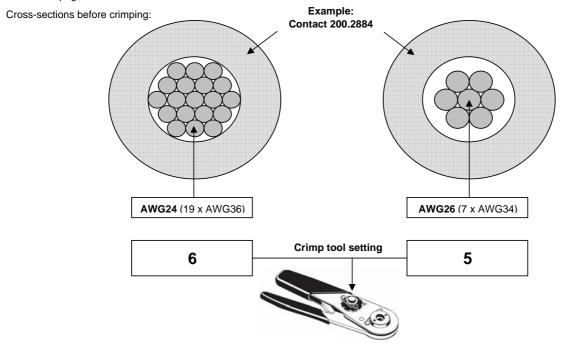
The strands are overtwisted; therefore the distribution of strands within the crimp barrel is not assured (increase of the wire cross-section)

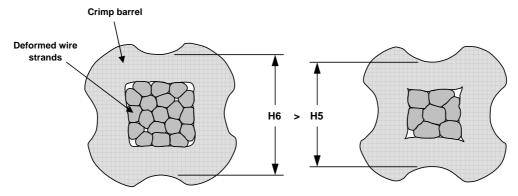


CRIMP PROCESS (Cont.)

CRIMPING

Conductor location:


The conductor shall be correctly located in the barrel, i.e. to the correct depth. It must be visible inside the inspection window. All conductor strands shall be within the barrel. There shall be no damaged strands.


Deformation of the crimp barrel:

The figures below show the crimping of the same contact but with two different wire sizes.

The smaller wire requires a deeper deformation of the crimp barrel which is achieved by selecting the recommended crimp tool setting in **Table 3** on page 5.

With the aid of cross-section equipment it is possible to verify the quality of the crimp. Each strand should be compressed and deformed, crimp settings may be adjusted to get void free strand compression.

Document No. 600.00.451

Assembly Instructions

CRIMP PROCESS (Cont.)

Mechanical Properties of the Crimped Connection

For each contact and compatible wire combination, a proper crimp requires a crimp dimension (or height) that offers the highest performance.

The tensile test or pull test is the most widely used field test for evaluating the mechanical properties of the crimped connection. The chart on the existing page shows the requirements of the IEC 60352-2 for various wire sizes. The force indicates the minimum acceptable force to break or separate terminal from the conductor.

- If the crimp dimension is too small, then the conductor is overcrimped and the wire strands could be damaged. This could also create a heat rise across the termination because of increased resistance.
- If this dimension is too large, then the conductor is undercrimped and the wire strands will not be deformed enough.

In both cases the result will be a lower pull out force.

Pull out force of crimped connections

Conductor cr	Conductor cross-section												
[mm²]	AWG ²⁾	[N]											
0.05	30	6											
0.08	28	11											
0.12	26	15											
0.14	-	18											
0.22	24	28											
0.25	-	32											
0.32	22	40											
0.5	20	60											
0.75	-	85											
0.82	18	90											

Note 1: Source: IEC 60352-2, § 5.2.2.1

Note 2: For information only

Methods for Building up Conductor Cross-Section

In some industries, the use of the methods described below is not recommended.

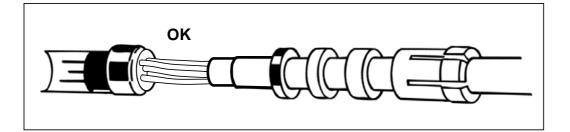
Normally, crimped connections are made with one wire in a crimp barrel. However under certain circumstances, when the wire size is smaller than the acceptable range of the crimp barrel, one of the following methods or a combination of both can be used to buildup the correct cross-section:

• The conductor is folded or bent back:

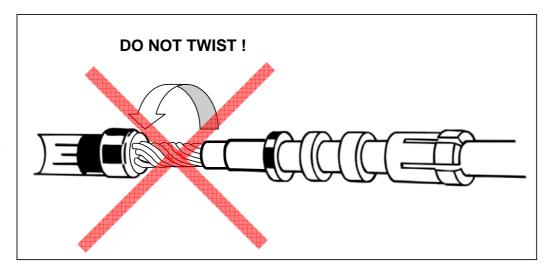
 The conductor area is increased by the use of bare (non-insulated) filler conductors as needed:

- Attention should be paid to the following items:
- The filler shall be visible at the wire entry end of the barrel.
- The filler conductors and/or the wire conductor are visible in the inspection window of the contact.
- The filler conductor is of the same type conductor as the wire being crimped into the contact.
 (Gauge can be different as needed but the base metal and the plating, if any, need to be the same).

Document No. 600.00.451


Assembly Instructions

ASSEMBLY IN CONNECTOR



A certain play in the bloc is necessary for the crimp contacts. Never twist the cable and wires during the cable assembly.

Document No. 600.00.451

ΔE	APPENDIX 1 - WIRE SIZE																																				
	This chart is intended for reference only.																																				
	Effective Cross-Sectional Area	mm ²	0.258	0.326	0.356	0.383	0.329	0.410	0.518	0.567	0.509	0.609	0.524	0.513	0.873	0.901	0.815	0.968	0.826	1 020	1309	1.433	1.220	1.324	1.309	1.330 1.850	2.081	2.279	1.940	2.088	Z.113						
	Effe Cross-Sec	CMA 1)	209	642	704	755	<u> </u>	810	1022	1119	1005	121	1034	1288	1624	1779	1608	1910	1330 1330	6791 0700	2583	2828	2408	2613	2584	2625 3257	4107	4497	3829	4121	† - 						
	Diameter	mm	0.57	0.64	0.76	0.81	0.74	0.72	0.81	0.97	0.91	0.97	1.02	0.97	1.02	1.17	1.17	1.22	1.17	1.22	1.79	1.52	1.37	1.47	1.5U	1.50	1.63	1.85	1.73	1.78	7. IO		AWG				
	Diam	Inches	0.023	0.025	0:030	0.032	0.029	0.028	0.032	0.038	9:00	0.038	0.040	0.038	0.040	0.046	0.046	0.048	0.046	0.048	0.045	0.060	0.054	0.058	0.059	0.059	0.064	0.073	0.068	0.070	0.000		Size of each strand in AWG				
	Stranding	7	Solid	Solid	7/30	19/34	56/3 6	Solid	Solid	7/28	10/30	19/32	26/34	Solid	Solid	7726	16/30	19/30	41/34	05/30 F:1-0	Solid	7/24	19/29	26/30	65/34	105/36 Solid	Solid	722	19/27	41/30	t000	←					
	AWG		23	22	22	72	22	21	20	70	70	50	2 5	19	<u>e</u>	82	92	8	œ ç	<u>,</u>	_ 9	16	16	9 9	9 9	6 10	#	#	4	# ;	<u>+</u>		Number of strands				
	tive ional Area	mm ²	0.002	0.003	0.005	900.0	900.0	0.010	0.013	0.016	0.020	0.025	0.032	800	0.000	0.051	0.056	0.060	0.064	19000	0.069	0.102	0.112	0.129	0.129	0.141	0.151	0.162	0.205	0.224	0.201	0.205					
	Effective Cross-Sectional Area	CMA 1)	3.9	6.2	9.9	12.5	15.7	19.8	25.0	31.5	39.8	50.1	2.59 0.00	69.2 74.3	787	101	110	118	127	150	£ £	202	221	254	254	278	588	320	404	442	590 475	405				es) in diameter.	
	Diameter	mm	0.050	0.063	0:080	060'0	0.10	0.11	0.13	0.14	0.16	0.18	D.20	0.23 0.73	0.23	0.25	0:30	0.33	0.29	0.32	0.30	98:0	0.43	0.46	0.40	0.48	0.51	0.45	0.51	0.61	00.00	0.61				mil (0.001 inch	
	Dian	Inches	0.0020	0.0025	0.0031	0.0035	0.0040	0.0045	0:00:0	0.0056	0.0063	0.0071	nnnan ooooo	0.0030	0.0089	0.010	0.012	0.013	0.011	0.013	0.015	0.014	0.017	0.018	0.016	0.019	0.020	0.018	0.020	0.024	0.023	0.024				a of a wire one	
	Stranding	7	Solid	Solid	Solid	Solid	Solid	Solid	Solid	Solid	Solid	Solid	Solid	19/44	Solid	Solid	7/38	19/42	Solid	Solid	19/4U	1/27	7/35	65/44	Solid	7/34 10/36	19/38	Solid	Solid	7/32	19/36	41/40			() NA N () 0 NA N) .	Note 1: Circular Mil Area (UMA): A circular mil is the cross-sectional area of a wire one mil (0.001 inches) in diameter.	
	AWG		44	42	40	ස	38	37	36	35	35	8	32	32	, F	8	90	30	20 8	97	87 88 78 PR	27	77	17	92	% %	56	55	24	74	77	24				Note 1: Circuit A circular mil it	

Document No. 600.00.451